This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Modular reduction produces a half-open interval. (Contributed by Stefan O'Rear, 12-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modelico | |- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) e. ( 0 [,) B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modcl | |- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) e. RR ) |
|
| 2 | modge0 | |- ( ( A e. RR /\ B e. RR+ ) -> 0 <_ ( A mod B ) ) |
|
| 3 | modlt | |- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) < B ) |
|
| 4 | 0re | |- 0 e. RR |
|
| 5 | rpxr | |- ( B e. RR+ -> B e. RR* ) |
|
| 6 | 5 | adantl | |- ( ( A e. RR /\ B e. RR+ ) -> B e. RR* ) |
| 7 | elico2 | |- ( ( 0 e. RR /\ B e. RR* ) -> ( ( A mod B ) e. ( 0 [,) B ) <-> ( ( A mod B ) e. RR /\ 0 <_ ( A mod B ) /\ ( A mod B ) < B ) ) ) |
|
| 8 | 4 6 7 | sylancr | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) e. ( 0 [,) B ) <-> ( ( A mod B ) e. RR /\ 0 <_ ( A mod B ) /\ ( A mod B ) < B ) ) ) |
| 9 | 1 2 3 8 | mpbir3and | |- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) e. ( 0 [,) B ) ) |