This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of a real number modulo a positive real number and an integer equals the product of the real number and the integer modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modmulmod | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐴 mod 𝑀 ) · 𝐵 ) mod 𝑀 ) = ( ( 𝐴 · 𝐵 ) mod 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) ∈ ℝ ) | |
| 2 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) | |
| 3 | 1 2 | jca | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) ) |
| 4 | 3 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) ) |
| 5 | 3simpc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ) | |
| 6 | modabs2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) mod 𝑀 ) = ( 𝐴 mod 𝑀 ) ) | |
| 7 | 6 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) mod 𝑀 ) = ( 𝐴 mod 𝑀 ) ) |
| 8 | modmul1 | ⊢ ( ( ( ( 𝐴 mod 𝑀 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ ( 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( ( 𝐴 mod 𝑀 ) mod 𝑀 ) = ( 𝐴 mod 𝑀 ) ) → ( ( ( 𝐴 mod 𝑀 ) · 𝐵 ) mod 𝑀 ) = ( ( 𝐴 · 𝐵 ) mod 𝑀 ) ) | |
| 9 | 4 5 7 8 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐴 mod 𝑀 ) · 𝐵 ) mod 𝑀 ) = ( ( 𝐴 · 𝐵 ) mod 𝑀 ) ) |