This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of expressing "at most one" element in a class. (Contributed by Zhi Wang, 19-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mo0sn | |- ( E* x x e. A <-> ( A = (/) \/ E. y A = { y } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | |- F/ z x e. A |
|
| 2 | nfv | |- F/ x z e. A |
|
| 3 | eleq1w | |- ( x = z -> ( x e. A <-> z e. A ) ) |
|
| 4 | 1 2 3 | cbvmow | |- ( E* x x e. A <-> E* z z e. A ) |
| 5 | neq0 | |- ( -. A = (/) <-> E. z z e. A ) |
|
| 6 | 5 | anbi1i | |- ( ( -. A = (/) /\ E* z z e. A ) <-> ( E. z z e. A /\ E* z z e. A ) ) |
| 7 | df-eu | |- ( E! z z e. A <-> ( E. z z e. A /\ E* z z e. A ) ) |
|
| 8 | eu6 | |- ( E! z z e. A <-> E. y A. z ( z e. A <-> z = y ) ) |
|
| 9 | 6 7 8 | 3bitr2i | |- ( ( -. A = (/) /\ E* z z e. A ) <-> E. y A. z ( z e. A <-> z = y ) ) |
| 10 | dfcleq | |- ( A = { y } <-> A. z ( z e. A <-> z e. { y } ) ) |
|
| 11 | velsn | |- ( z e. { y } <-> z = y ) |
|
| 12 | 11 | bibi2i | |- ( ( z e. A <-> z e. { y } ) <-> ( z e. A <-> z = y ) ) |
| 13 | 12 | albii | |- ( A. z ( z e. A <-> z e. { y } ) <-> A. z ( z e. A <-> z = y ) ) |
| 14 | 10 13 | sylbbr | |- ( A. z ( z e. A <-> z = y ) -> A = { y } ) |
| 15 | 14 | eximi | |- ( E. y A. z ( z e. A <-> z = y ) -> E. y A = { y } ) |
| 16 | 9 15 | sylbi | |- ( ( -. A = (/) /\ E* z z e. A ) -> E. y A = { y } ) |
| 17 | 16 | expcom | |- ( E* z z e. A -> ( -. A = (/) -> E. y A = { y } ) ) |
| 18 | 17 | orrd | |- ( E* z z e. A -> ( A = (/) \/ E. y A = { y } ) ) |
| 19 | mo0 | |- ( A = (/) -> E* z z e. A ) |
|
| 20 | mosn | |- ( A = { y } -> E* z z e. A ) |
|
| 21 | 20 | exlimiv | |- ( E. y A = { y } -> E* z z e. A ) |
| 22 | 19 21 | jaoi | |- ( ( A = (/) \/ E. y A = { y } ) -> E* z z e. A ) |
| 23 | 18 22 | impbii | |- ( E* z z e. A <-> ( A = (/) \/ E. y A = { y } ) ) |
| 24 | 4 23 | bitri | |- ( E* x x e. A <-> ( A = (/) \/ E. y A = { y } ) ) |