This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mndtccat and mndtcid . (Contributed by Zhi Wang, 22-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndtccat.c | ⊢ ( 𝜑 → 𝐶 = ( MndToCat ‘ 𝑀 ) ) | |
| mndtccat.m | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) | ||
| Assertion | mndtccatid | ⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 0g ‘ 𝑀 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndtccat.c | ⊢ ( 𝜑 → 𝐶 = ( MndToCat ‘ 𝑀 ) ) | |
| 2 | mndtccat.m | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) | |
| 3 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) ) | |
| 4 | eqidd | ⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) | |
| 5 | eqidd | ⊢ ( 𝜑 → ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) ) | |
| 6 | fvexd | ⊢ ( 𝜑 → ( MndToCat ‘ 𝑀 ) ∈ V ) | |
| 7 | 1 6 | eqeltrd | ⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 8 | biid | ⊢ ( ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 10 | eqid | ⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) | |
| 11 | 9 10 | mndidcl | ⊢ ( 𝑀 ∈ Mnd → ( 0g ‘ 𝑀 ) ∈ ( Base ‘ 𝑀 ) ) |
| 12 | 2 11 | syl | ⊢ ( 𝜑 → ( 0g ‘ 𝑀 ) ∈ ( Base ‘ 𝑀 ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( 0g ‘ 𝑀 ) ∈ ( Base ‘ 𝑀 ) ) |
| 14 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 = ( MndToCat ‘ 𝑀 ) ) |
| 15 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → 𝑀 ∈ Mnd ) |
| 16 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) ) | |
| 17 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 18 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) | |
| 19 | 14 15 16 17 17 18 | mndtchom | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑦 ( Hom ‘ 𝐶 ) 𝑦 ) = ( Base ‘ 𝑀 ) ) |
| 20 | 13 19 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( 0g ‘ 𝑀 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 21 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → 𝐶 = ( MndToCat ‘ 𝑀 ) ) |
| 22 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → 𝑀 ∈ Mnd ) |
| 23 | eqidd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) ) | |
| 24 | simpr1l | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 25 | simpr1r | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 26 | eqidd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) ) | |
| 27 | 21 22 23 24 25 25 26 | mndtcco | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑦 ) = ( +g ‘ 𝑀 ) ) |
| 28 | 27 | oveqd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( ( 0g ‘ 𝑀 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑓 ) = ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑓 ) ) |
| 29 | simpr31 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) | |
| 30 | eqidd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) | |
| 31 | 21 22 23 24 25 30 | mndtchom | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( Base ‘ 𝑀 ) ) |
| 32 | 29 31 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → 𝑓 ∈ ( Base ‘ 𝑀 ) ) |
| 33 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 34 | 9 33 10 | mndlid | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑓 ∈ ( Base ‘ 𝑀 ) ) → ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑓 ) = 𝑓 ) |
| 35 | 22 32 34 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑓 ) = 𝑓 ) |
| 36 | 28 35 | eqtrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( ( 0g ‘ 𝑀 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑓 ) = 𝑓 ) |
| 37 | simpr2l | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) | |
| 38 | 21 22 23 25 25 37 26 | mndtcco | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( 〈 𝑦 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) = ( +g ‘ 𝑀 ) ) |
| 39 | 38 | oveqd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 0g ‘ 𝑀 ) ) = ( 𝑔 ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) ) |
| 40 | simpr32 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) | |
| 41 | 21 22 23 25 37 30 | mndtchom | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) = ( Base ‘ 𝑀 ) ) |
| 42 | 40 41 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → 𝑔 ∈ ( Base ‘ 𝑀 ) ) |
| 43 | 9 33 10 | mndrid | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑔 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑔 ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) = 𝑔 ) |
| 44 | 22 42 43 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( 𝑔 ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) = 𝑔 ) |
| 45 | 39 44 | eqtrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 0g ‘ 𝑀 ) ) = 𝑔 ) |
| 46 | 9 33 | mndcl | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑔 ∈ ( Base ‘ 𝑀 ) ∧ 𝑓 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑔 ( +g ‘ 𝑀 ) 𝑓 ) ∈ ( Base ‘ 𝑀 ) ) |
| 47 | 22 42 32 46 | syl3anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( 𝑔 ( +g ‘ 𝑀 ) 𝑓 ) ∈ ( Base ‘ 𝑀 ) ) |
| 48 | 21 22 23 24 25 37 26 | mndtcco | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) = ( +g ‘ 𝑀 ) ) |
| 49 | 48 | oveqd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( +g ‘ 𝑀 ) 𝑓 ) ) |
| 50 | 21 22 23 24 37 30 | mndtchom | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) = ( Base ‘ 𝑀 ) ) |
| 51 | 47 49 50 | 3eltr4d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 52 | simpr33 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) | |
| 53 | simpr2r | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) ) | |
| 54 | 21 22 23 37 53 30 | mndtchom | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) = ( Base ‘ 𝑀 ) ) |
| 55 | 52 54 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → 𝑘 ∈ ( Base ‘ 𝑀 ) ) |
| 56 | 9 33 | mndass | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑘 ∈ ( Base ‘ 𝑀 ) ∧ 𝑔 ∈ ( Base ‘ 𝑀 ) ∧ 𝑓 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝑘 ( +g ‘ 𝑀 ) 𝑔 ) ( +g ‘ 𝑀 ) 𝑓 ) = ( 𝑘 ( +g ‘ 𝑀 ) ( 𝑔 ( +g ‘ 𝑀 ) 𝑓 ) ) ) |
| 57 | 22 55 42 32 56 | syl13anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( ( 𝑘 ( +g ‘ 𝑀 ) 𝑔 ) ( +g ‘ 𝑀 ) 𝑓 ) = ( 𝑘 ( +g ‘ 𝑀 ) ( 𝑔 ( +g ‘ 𝑀 ) 𝑓 ) ) ) |
| 58 | 21 22 23 24 25 53 26 | mndtcco | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) = ( +g ‘ 𝑀 ) ) |
| 59 | 21 22 23 25 37 53 26 | mndtcco | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) = ( +g ‘ 𝑀 ) ) |
| 60 | 59 | oveqd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( 𝑘 ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) = ( 𝑘 ( +g ‘ 𝑀 ) 𝑔 ) ) |
| 61 | eqidd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → 𝑓 = 𝑓 ) | |
| 62 | 58 60 61 | oveq123d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ( 𝑘 ( +g ‘ 𝑀 ) 𝑔 ) ( +g ‘ 𝑀 ) 𝑓 ) ) |
| 63 | 21 22 23 24 37 53 26 | mndtcco | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) = ( +g ‘ 𝑀 ) ) |
| 64 | eqidd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → 𝑘 = 𝑘 ) | |
| 65 | 63 64 49 | oveq123d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( 𝑘 ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( 𝑘 ( +g ‘ 𝑀 ) ( 𝑔 ( +g ‘ 𝑀 ) 𝑓 ) ) ) |
| 66 | 57 62 65 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) ) → ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) |
| 67 | 3 4 5 7 8 20 36 45 51 66 | iscatd2 | ⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 0g ‘ 𝑀 ) ) ) ) |