This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The addition operation of a monoid is an onto function (assuming it is a function). (Contributed by Mario Carneiro, 11-Oct-2013) (Proof shortened by AV, 23-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndfo.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mndfo.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | mndfo | ⊢ ( ( 𝐺 ∈ Mnd ∧ + Fn ( 𝐵 × 𝐵 ) ) → + : ( 𝐵 × 𝐵 ) –onto→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndfo.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mndfo.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( +𝑓 ‘ 𝐺 ) = ( +𝑓 ‘ 𝐺 ) | |
| 4 | 1 3 | mndpfo | ⊢ ( 𝐺 ∈ Mnd → ( +𝑓 ‘ 𝐺 ) : ( 𝐵 × 𝐵 ) –onto→ 𝐵 ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐺 ∈ Mnd ∧ + Fn ( 𝐵 × 𝐵 ) ) → ( +𝑓 ‘ 𝐺 ) : ( 𝐵 × 𝐵 ) –onto→ 𝐵 ) |
| 6 | 1 2 3 | plusfeq | ⊢ ( + Fn ( 𝐵 × 𝐵 ) → ( +𝑓 ‘ 𝐺 ) = + ) |
| 7 | 6 | eqcomd | ⊢ ( + Fn ( 𝐵 × 𝐵 ) → + = ( +𝑓 ‘ 𝐺 ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐺 ∈ Mnd ∧ + Fn ( 𝐵 × 𝐵 ) ) → + = ( +𝑓 ‘ 𝐺 ) ) |
| 9 | foeq1 | ⊢ ( + = ( +𝑓 ‘ 𝐺 ) → ( + : ( 𝐵 × 𝐵 ) –onto→ 𝐵 ↔ ( +𝑓 ‘ 𝐺 ) : ( 𝐵 × 𝐵 ) –onto→ 𝐵 ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐺 ∈ Mnd ∧ + Fn ( 𝐵 × 𝐵 ) ) → ( + : ( 𝐵 × 𝐵 ) –onto→ 𝐵 ↔ ( +𝑓 ‘ 𝐺 ) : ( 𝐵 × 𝐵 ) –onto→ 𝐵 ) ) |
| 11 | 5 10 | mpbird | ⊢ ( ( 𝐺 ∈ Mnd ∧ + Fn ( 𝐵 × 𝐵 ) ) → + : ( 𝐵 × 𝐵 ) –onto→ 𝐵 ) |