This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mgpval.1 | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| mgpval.2 | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | mgpval | ⊢ 𝑀 = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , · 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpval.1 | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| 2 | mgpval.2 | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | id | ⊢ ( 𝑟 = 𝑅 → 𝑟 = 𝑅 ) | |
| 4 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) | |
| 5 | 4 2 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = · ) |
| 6 | 5 | opeq2d | ⊢ ( 𝑟 = 𝑅 → 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑟 ) 〉 = 〈 ( +g ‘ ndx ) , · 〉 ) |
| 7 | 3 6 | oveq12d | ⊢ ( 𝑟 = 𝑅 → ( 𝑟 sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑟 ) 〉 ) = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , · 〉 ) ) |
| 8 | df-mgp | ⊢ mulGrp = ( 𝑟 ∈ V ↦ ( 𝑟 sSet 〈 ( +g ‘ ndx ) , ( .r ‘ 𝑟 ) 〉 ) ) | |
| 9 | ovex | ⊢ ( 𝑅 sSet 〈 ( +g ‘ ndx ) , · 〉 ) ∈ V | |
| 10 | 7 8 9 | fvmpt | ⊢ ( 𝑅 ∈ V → ( mulGrp ‘ 𝑅 ) = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , · 〉 ) ) |
| 11 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( mulGrp ‘ 𝑅 ) = ∅ ) | |
| 12 | reldmsets | ⊢ Rel dom sSet | |
| 13 | 12 | ovprc1 | ⊢ ( ¬ 𝑅 ∈ V → ( 𝑅 sSet 〈 ( +g ‘ ndx ) , · 〉 ) = ∅ ) |
| 14 | 11 13 | eqtr4d | ⊢ ( ¬ 𝑅 ∈ V → ( mulGrp ‘ 𝑅 ) = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , · 〉 ) ) |
| 15 | 10 14 | pm2.61i | ⊢ ( mulGrp ‘ 𝑅 ) = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , · 〉 ) |
| 16 | 1 15 | eqtri | ⊢ 𝑀 = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , · 〉 ) |