This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity element of a magma, if it exists, is a left and right identity. (Contributed by Mario Carneiro, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismgmid.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ismgmid.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| ismgmid.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| mgmidcl.e | ⊢ ( 𝜑 → ∃ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) | ||
| Assertion | mgmlrid | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 + 𝑋 ) = 𝑋 ∧ ( 𝑋 + 0 ) = 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismgmid.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ismgmid.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | ismgmid.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | mgmidcl.e | ⊢ ( 𝜑 → ∃ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) | |
| 5 | eqid | ⊢ 0 = 0 | |
| 6 | 1 2 3 4 | ismgmid | ⊢ ( 𝜑 → ( ( 0 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) ↔ 0 = 0 ) ) |
| 7 | 5 6 | mpbiri | ⊢ ( 𝜑 → ( 0 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) ) |
| 8 | 7 | simprd | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) |
| 9 | oveq2 | ⊢ ( 𝑥 = 𝑋 → ( 0 + 𝑥 ) = ( 0 + 𝑋 ) ) | |
| 10 | id | ⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) | |
| 11 | 9 10 | eqeq12d | ⊢ ( 𝑥 = 𝑋 → ( ( 0 + 𝑥 ) = 𝑥 ↔ ( 0 + 𝑋 ) = 𝑋 ) ) |
| 12 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 + 0 ) = ( 𝑋 + 0 ) ) | |
| 13 | 12 10 | eqeq12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 + 0 ) = 𝑥 ↔ ( 𝑋 + 0 ) = 𝑋 ) ) |
| 14 | 11 13 | anbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ↔ ( ( 0 + 𝑋 ) = 𝑋 ∧ ( 𝑋 + 0 ) = 𝑋 ) ) ) |
| 15 | 14 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝐵 ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 + 𝑋 ) = 𝑋 ∧ ( 𝑋 + 0 ) = 𝑋 ) ) |
| 16 | 8 15 | sylan | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 + 𝑋 ) = 𝑋 ∧ ( 𝑋 + 0 ) = 𝑋 ) ) |