This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity element of a magma, if it exists, is a left and right identity. (Contributed by Mario Carneiro, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismgmid.b | |- B = ( Base ` G ) |
|
| ismgmid.o | |- .0. = ( 0g ` G ) |
||
| ismgmid.p | |- .+ = ( +g ` G ) |
||
| mgmidcl.e | |- ( ph -> E. e e. B A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) ) |
||
| Assertion | mgmlrid | |- ( ( ph /\ X e. B ) -> ( ( .0. .+ X ) = X /\ ( X .+ .0. ) = X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismgmid.b | |- B = ( Base ` G ) |
|
| 2 | ismgmid.o | |- .0. = ( 0g ` G ) |
|
| 3 | ismgmid.p | |- .+ = ( +g ` G ) |
|
| 4 | mgmidcl.e | |- ( ph -> E. e e. B A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) ) |
|
| 5 | eqid | |- .0. = .0. |
|
| 6 | 1 2 3 4 | ismgmid | |- ( ph -> ( ( .0. e. B /\ A. x e. B ( ( .0. .+ x ) = x /\ ( x .+ .0. ) = x ) ) <-> .0. = .0. ) ) |
| 7 | 5 6 | mpbiri | |- ( ph -> ( .0. e. B /\ A. x e. B ( ( .0. .+ x ) = x /\ ( x .+ .0. ) = x ) ) ) |
| 8 | 7 | simprd | |- ( ph -> A. x e. B ( ( .0. .+ x ) = x /\ ( x .+ .0. ) = x ) ) |
| 9 | oveq2 | |- ( x = X -> ( .0. .+ x ) = ( .0. .+ X ) ) |
|
| 10 | id | |- ( x = X -> x = X ) |
|
| 11 | 9 10 | eqeq12d | |- ( x = X -> ( ( .0. .+ x ) = x <-> ( .0. .+ X ) = X ) ) |
| 12 | oveq1 | |- ( x = X -> ( x .+ .0. ) = ( X .+ .0. ) ) |
|
| 13 | 12 10 | eqeq12d | |- ( x = X -> ( ( x .+ .0. ) = x <-> ( X .+ .0. ) = X ) ) |
| 14 | 11 13 | anbi12d | |- ( x = X -> ( ( ( .0. .+ x ) = x /\ ( x .+ .0. ) = x ) <-> ( ( .0. .+ X ) = X /\ ( X .+ .0. ) = X ) ) ) |
| 15 | 14 | rspccva | |- ( ( A. x e. B ( ( .0. .+ x ) = x /\ ( x .+ .0. ) = x ) /\ X e. B ) -> ( ( .0. .+ X ) = X /\ ( X .+ .0. ) = X ) ) |
| 16 | 8 15 | sylan | |- ( ( ph /\ X e. B ) -> ( ( .0. .+ X ) = X /\ ( X .+ .0. ) = X ) ) |