This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismgmid.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ismgmid.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| ismgmid.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| mgmidcl.e | ⊢ ( 𝜑 → ∃ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) | ||
| Assertion | ismgmid | ⊢ ( 𝜑 → ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑈 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑈 ) = 𝑥 ) ) ↔ 0 = 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismgmid.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ismgmid.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | ismgmid.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | mgmidcl.e | ⊢ ( 𝜑 → ∃ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) | |
| 5 | id | ⊢ ( 𝑈 ∈ 𝐵 → 𝑈 ∈ 𝐵 ) | |
| 6 | mgmidmo | ⊢ ∃* 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) | |
| 7 | reu5 | ⊢ ( ∃! 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ↔ ( ∃ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ∧ ∃* 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) ) | |
| 8 | 4 6 7 | sylanblrc | ⊢ ( 𝜑 → ∃! 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) |
| 9 | oveq1 | ⊢ ( 𝑒 = 𝑈 → ( 𝑒 + 𝑥 ) = ( 𝑈 + 𝑥 ) ) | |
| 10 | 9 | eqeq1d | ⊢ ( 𝑒 = 𝑈 → ( ( 𝑒 + 𝑥 ) = 𝑥 ↔ ( 𝑈 + 𝑥 ) = 𝑥 ) ) |
| 11 | 10 | ovanraleqv | ⊢ ( 𝑒 = 𝑈 → ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( 𝑈 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑈 ) = 𝑥 ) ) ) |
| 12 | 11 | riota2 | ⊢ ( ( 𝑈 ∈ 𝐵 ∧ ∃! 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) → ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑈 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑈 ) = 𝑥 ) ↔ ( ℩ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) = 𝑈 ) ) |
| 13 | 5 8 12 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑈 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑈 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑈 ) = 𝑥 ) ↔ ( ℩ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) = 𝑈 ) ) |
| 14 | 13 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑈 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑈 ) = 𝑥 ) ) ↔ ( 𝑈 ∈ 𝐵 ∧ ( ℩ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) = 𝑈 ) ) ) |
| 15 | riotacl | ⊢ ( ∃! 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) → ( ℩ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) ∈ 𝐵 ) | |
| 16 | 8 15 | syl | ⊢ ( 𝜑 → ( ℩ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) ∈ 𝐵 ) |
| 17 | eleq1 | ⊢ ( ( ℩ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) = 𝑈 → ( ( ℩ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) ∈ 𝐵 ↔ 𝑈 ∈ 𝐵 ) ) | |
| 18 | 16 17 | syl5ibcom | ⊢ ( 𝜑 → ( ( ℩ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) = 𝑈 → 𝑈 ∈ 𝐵 ) ) |
| 19 | 18 | pm4.71rd | ⊢ ( 𝜑 → ( ( ℩ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) = 𝑈 ↔ ( 𝑈 ∈ 𝐵 ∧ ( ℩ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) = 𝑈 ) ) ) |
| 20 | df-riota | ⊢ ( ℩ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) = ( ℩ 𝑒 ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) ) | |
| 21 | 1 3 2 | grpidval | ⊢ 0 = ( ℩ 𝑒 ( 𝑒 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) ) |
| 22 | 20 21 | eqtr4i | ⊢ ( ℩ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) = 0 |
| 23 | 22 | eqeq1i | ⊢ ( ( ℩ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) = 𝑈 ↔ 0 = 𝑈 ) |
| 24 | 23 | a1i | ⊢ ( 𝜑 → ( ( ℩ 𝑒 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) = 𝑈 ↔ 0 = 𝑈 ) ) |
| 25 | 14 19 24 | 3bitr2d | ⊢ ( 𝜑 → ( ( 𝑈 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑈 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑈 ) = 𝑥 ) ) ↔ 0 = 𝑈 ) ) |