This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any two elements of the filter base generated by the metric D can be compared, like for RR+ (i.e. it's totally ordered). (Contributed by Thierry Arnoux, 22-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metust.1 | |- F = ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) |
|
| Assertion | metustto | |- ( ( D e. ( PsMet ` X ) /\ A e. F /\ B e. F ) -> ( A C_ B \/ B C_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metust.1 | |- F = ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) |
|
| 2 | simpll | |- ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) -> a e. RR+ ) |
|
| 3 | 2 | rpred | |- ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) -> a e. RR ) |
| 4 | simplr | |- ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) -> b e. RR+ ) |
|
| 5 | 4 | rpred | |- ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) -> b e. RR ) |
| 6 | simpllr | |- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ a <_ b ) -> b e. RR+ ) |
|
| 7 | 6 | rpred | |- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ a <_ b ) -> b e. RR ) |
| 8 | 0xr | |- 0 e. RR* |
|
| 9 | 8 | a1i | |- ( ( b e. RR /\ a <_ b ) -> 0 e. RR* ) |
| 10 | simpl | |- ( ( b e. RR /\ a <_ b ) -> b e. RR ) |
|
| 11 | 10 | rexrd | |- ( ( b e. RR /\ a <_ b ) -> b e. RR* ) |
| 12 | 0le0 | |- 0 <_ 0 |
|
| 13 | 12 | a1i | |- ( ( b e. RR /\ a <_ b ) -> 0 <_ 0 ) |
| 14 | simpr | |- ( ( b e. RR /\ a <_ b ) -> a <_ b ) |
|
| 15 | icossico | |- ( ( ( 0 e. RR* /\ b e. RR* ) /\ ( 0 <_ 0 /\ a <_ b ) ) -> ( 0 [,) a ) C_ ( 0 [,) b ) ) |
|
| 16 | 9 11 13 14 15 | syl22anc | |- ( ( b e. RR /\ a <_ b ) -> ( 0 [,) a ) C_ ( 0 [,) b ) ) |
| 17 | imass2 | |- ( ( 0 [,) a ) C_ ( 0 [,) b ) -> ( `' D " ( 0 [,) a ) ) C_ ( `' D " ( 0 [,) b ) ) ) |
|
| 18 | 16 17 | syl | |- ( ( b e. RR /\ a <_ b ) -> ( `' D " ( 0 [,) a ) ) C_ ( `' D " ( 0 [,) b ) ) ) |
| 19 | 7 18 | sylancom | |- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ a <_ b ) -> ( `' D " ( 0 [,) a ) ) C_ ( `' D " ( 0 [,) b ) ) ) |
| 20 | simplrl | |- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ a <_ b ) -> A = ( `' D " ( 0 [,) a ) ) ) |
|
| 21 | simplrr | |- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ a <_ b ) -> B = ( `' D " ( 0 [,) b ) ) ) |
|
| 22 | 19 20 21 | 3sstr4d | |- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ a <_ b ) -> A C_ B ) |
| 23 | 22 | orcd | |- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ a <_ b ) -> ( A C_ B \/ B C_ A ) ) |
| 24 | simplll | |- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ b <_ a ) -> a e. RR+ ) |
|
| 25 | 24 | rpred | |- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ b <_ a ) -> a e. RR ) |
| 26 | 8 | a1i | |- ( ( a e. RR /\ b <_ a ) -> 0 e. RR* ) |
| 27 | simpl | |- ( ( a e. RR /\ b <_ a ) -> a e. RR ) |
|
| 28 | 27 | rexrd | |- ( ( a e. RR /\ b <_ a ) -> a e. RR* ) |
| 29 | 12 | a1i | |- ( ( a e. RR /\ b <_ a ) -> 0 <_ 0 ) |
| 30 | simpr | |- ( ( a e. RR /\ b <_ a ) -> b <_ a ) |
|
| 31 | icossico | |- ( ( ( 0 e. RR* /\ a e. RR* ) /\ ( 0 <_ 0 /\ b <_ a ) ) -> ( 0 [,) b ) C_ ( 0 [,) a ) ) |
|
| 32 | 26 28 29 30 31 | syl22anc | |- ( ( a e. RR /\ b <_ a ) -> ( 0 [,) b ) C_ ( 0 [,) a ) ) |
| 33 | imass2 | |- ( ( 0 [,) b ) C_ ( 0 [,) a ) -> ( `' D " ( 0 [,) b ) ) C_ ( `' D " ( 0 [,) a ) ) ) |
|
| 34 | 32 33 | syl | |- ( ( a e. RR /\ b <_ a ) -> ( `' D " ( 0 [,) b ) ) C_ ( `' D " ( 0 [,) a ) ) ) |
| 35 | 25 34 | sylancom | |- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ b <_ a ) -> ( `' D " ( 0 [,) b ) ) C_ ( `' D " ( 0 [,) a ) ) ) |
| 36 | simplrr | |- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ b <_ a ) -> B = ( `' D " ( 0 [,) b ) ) ) |
|
| 37 | simplrl | |- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ b <_ a ) -> A = ( `' D " ( 0 [,) a ) ) ) |
|
| 38 | 35 36 37 | 3sstr4d | |- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ b <_ a ) -> B C_ A ) |
| 39 | 38 | olcd | |- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ b <_ a ) -> ( A C_ B \/ B C_ A ) ) |
| 40 | 3 5 23 39 | lecasei | |- ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) -> ( A C_ B \/ B C_ A ) ) |
| 41 | 40 | adantlll | |- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F /\ B e. F ) /\ a e. RR+ ) /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) -> ( A C_ B \/ B C_ A ) ) |
| 42 | 1 | metustel | |- ( D e. ( PsMet ` X ) -> ( A e. F <-> E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) ) ) |
| 43 | 42 | biimpa | |- ( ( D e. ( PsMet ` X ) /\ A e. F ) -> E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) ) |
| 44 | 43 | 3adant3 | |- ( ( D e. ( PsMet ` X ) /\ A e. F /\ B e. F ) -> E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) ) |
| 45 | oveq2 | |- ( a = b -> ( 0 [,) a ) = ( 0 [,) b ) ) |
|
| 46 | 45 | imaeq2d | |- ( a = b -> ( `' D " ( 0 [,) a ) ) = ( `' D " ( 0 [,) b ) ) ) |
| 47 | 46 | cbvmptv | |- ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) |
| 48 | 47 | rneqi | |- ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) |
| 49 | 1 48 | eqtri | |- F = ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) |
| 50 | 49 | metustel | |- ( D e. ( PsMet ` X ) -> ( B e. F <-> E. b e. RR+ B = ( `' D " ( 0 [,) b ) ) ) ) |
| 51 | 50 | biimpa | |- ( ( D e. ( PsMet ` X ) /\ B e. F ) -> E. b e. RR+ B = ( `' D " ( 0 [,) b ) ) ) |
| 52 | 51 | 3adant2 | |- ( ( D e. ( PsMet ` X ) /\ A e. F /\ B e. F ) -> E. b e. RR+ B = ( `' D " ( 0 [,) b ) ) ) |
| 53 | reeanv | |- ( E. a e. RR+ E. b e. RR+ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) <-> ( E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) /\ E. b e. RR+ B = ( `' D " ( 0 [,) b ) ) ) ) |
|
| 54 | 44 52 53 | sylanbrc | |- ( ( D e. ( PsMet ` X ) /\ A e. F /\ B e. F ) -> E. a e. RR+ E. b e. RR+ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) |
| 55 | 41 54 | r19.29vva | |- ( ( D e. ( PsMet ` X ) /\ A e. F /\ B e. F ) -> ( A C_ B \/ B C_ A ) ) |