This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A point belongs to the closure of a subset iff there is a sequence in the subset converging to it. Theorem 1.4-6(a) of Kreyszig p. 30. This proof uses countable choice ax-cc . The statement can be generalized to first-countable spaces, not just metrizable spaces. (Contributed by NM, 8-Nov-2007) (Proof shortened by Mario Carneiro, 1-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metelcls.2 | |- J = ( MetOpen ` D ) |
|
| metelcls.3 | |- ( ph -> D e. ( *Met ` X ) ) |
||
| metelcls.5 | |- ( ph -> S C_ X ) |
||
| Assertion | metelcls | |- ( ph -> ( P e. ( ( cls ` J ) ` S ) <-> E. f ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metelcls.2 | |- J = ( MetOpen ` D ) |
|
| 2 | metelcls.3 | |- ( ph -> D e. ( *Met ` X ) ) |
|
| 3 | metelcls.5 | |- ( ph -> S C_ X ) |
|
| 4 | 1 | met1stc | |- ( D e. ( *Met ` X ) -> J e. 1stc ) |
| 5 | 2 4 | syl | |- ( ph -> J e. 1stc ) |
| 6 | 1 | mopnuni | |- ( D e. ( *Met ` X ) -> X = U. J ) |
| 7 | 2 6 | syl | |- ( ph -> X = U. J ) |
| 8 | 3 7 | sseqtrd | |- ( ph -> S C_ U. J ) |
| 9 | eqid | |- U. J = U. J |
|
| 10 | 9 | 1stcelcls | |- ( ( J e. 1stc /\ S C_ U. J ) -> ( P e. ( ( cls ` J ) ` S ) <-> E. f ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) ) |
| 11 | 5 8 10 | syl2anc | |- ( ph -> ( P e. ( ( cls ` J ) ` S ) <-> E. f ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) ) |