This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC TOPOLOGY
Metric subcomplex vector spaces
Convergence and completeness
metelcls
Metamath Proof Explorer
Description: A point belongs to the closure of a subset iff there is a sequence in
the subset converging to it. Theorem 1.4-6(a) of Kreyszig p. 30.
This proof uses countable choice ax-cc . The statement can be
generalized to first-countable spaces, not just metrizable spaces.
(Contributed by NM , 8-Nov-2007) (Proof shortened by Mario Carneiro , 1-May-2015)
Ref
Expression
Hypotheses
metelcls.2
⊢ J = MetOpen ⁡ D
metelcls.3
⊢ φ → D ∈ ∞Met ⁡ X
metelcls.5
⊢ φ → S ⊆ X
Assertion
metelcls
⊢ φ → P ∈ cls ⁡ J ⁡ S ↔ ∃ f f : ℕ ⟶ S ∧ f ⇝ t ⁡ J P
Proof
Step
Hyp
Ref
Expression
1
metelcls.2
⊢ J = MetOpen ⁡ D
2
metelcls.3
⊢ φ → D ∈ ∞Met ⁡ X
3
metelcls.5
⊢ φ → S ⊆ X
4
1
met1stc
⊢ D ∈ ∞Met ⁡ X → J ∈ 1 st 𝜔
5
2 4
syl
⊢ φ → J ∈ 1 st 𝜔
6
1
mopnuni
⊢ D ∈ ∞Met ⁡ X → X = ⋃ J
7
2 6
syl
⊢ φ → X = ⋃ J
8
3 7
sseqtrd
⊢ φ → S ⊆ ⋃ J
9
eqid
⊢ ⋃ J = ⋃ J
10
9
1stcelcls
⊢ J ∈ 1 st 𝜔 ∧ S ⊆ ⋃ J → P ∈ cls ⁡ J ⁡ S ↔ ∃ f f : ℕ ⟶ S ∧ f ⇝ t ⁡ J P
11
5 8 10
syl2anc
⊢ φ → P ∈ cls ⁡ J ⁡ S ↔ ∃ f f : ℕ ⟶ S ∧ f ⇝ t ⁡ J P