This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a metric space is closed iff every convergent sequence on it converges to a point in the subset. Theorem 1.4-6(b) of Kreyszig p. 30. (Contributed by NM, 11-Nov-2007) (Revised by Mario Carneiro, 1-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metcld.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | metcld | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ∀ 𝑥 ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metcld.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | 1 | mopntop | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 3 | 1 | mopnuni | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 4 | 3 | sseq2d | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑆 ⊆ 𝑋 ↔ 𝑆 ⊆ ∪ 𝐽 ) ) |
| 5 | 4 | biimpa | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 6 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 7 | 6 | iscld4 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) ) |
| 8 | 2 5 7 | syl2an2r | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) ) |
| 9 | 19.23v | ⊢ ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑆 ) ↔ ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑆 ) ) | |
| 10 | simpl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 11 | simpr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ⊆ 𝑋 ) | |
| 12 | 1 10 11 | metelcls | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) ) |
| 13 | 12 | imbi1d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) → 𝑥 ∈ 𝑆 ) ↔ ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑆 ) ) ) |
| 14 | 9 13 | bitr4id | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑆 ) ↔ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) → 𝑥 ∈ 𝑆 ) ) ) |
| 15 | 14 | albidv | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ∀ 𝑥 ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑆 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) → 𝑥 ∈ 𝑆 ) ) ) |
| 16 | df-ss | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ↔ ∀ 𝑥 ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) → 𝑥 ∈ 𝑆 ) ) | |
| 17 | 15 16 | bitr4di | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ∀ 𝑥 ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑆 ) ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) ) |
| 18 | 8 17 | bitr4d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ∀ 𝑥 ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑆 ) ) ) |