This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance from a point to a set is bounded by the distance to any member of the set. (Contributed by Mario Carneiro, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metdscn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) | |
| Assertion | metdsle | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝐵 ) ≤ ( 𝐴 𝐷 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metdscn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) | |
| 2 | simprr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) | |
| 3 | simpr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ⊆ 𝑋 ) | |
| 4 | 3 | sselda | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝐴 ∈ 𝑆 ) → 𝐴 ∈ 𝑋 ) |
| 5 | 4 | adantrr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) |
| 6 | 2 5 | jca | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) |
| 7 | 1 | metdstri | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝐵 ) ≤ ( ( 𝐵 𝐷 𝐴 ) +𝑒 ( 𝐹 ‘ 𝐴 ) ) ) |
| 8 | 6 7 | syldan | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝐵 ) ≤ ( ( 𝐵 𝐷 𝐴 ) +𝑒 ( 𝐹 ‘ 𝐴 ) ) ) |
| 9 | simpll | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 10 | xmetsym | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐴 ) = ( 𝐴 𝐷 𝐵 ) ) | |
| 11 | 9 2 5 10 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐵 𝐷 𝐴 ) = ( 𝐴 𝐷 𝐵 ) ) |
| 12 | 1 | metds0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆 ) → ( 𝐹 ‘ 𝐴 ) = 0 ) |
| 13 | 12 | 3expa | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝐴 ∈ 𝑆 ) → ( 𝐹 ‘ 𝐴 ) = 0 ) |
| 14 | 13 | adantrr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝐴 ) = 0 ) |
| 15 | 11 14 | oveq12d | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐵 𝐷 𝐴 ) +𝑒 ( 𝐹 ‘ 𝐴 ) ) = ( ( 𝐴 𝐷 𝐵 ) +𝑒 0 ) ) |
| 16 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ) | |
| 17 | 9 5 2 16 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ) |
| 18 | 17 | xaddridd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐵 ) +𝑒 0 ) = ( 𝐴 𝐷 𝐵 ) ) |
| 19 | 15 18 | eqtrd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐵 𝐷 𝐴 ) +𝑒 ( 𝐹 ‘ 𝐴 ) ) = ( 𝐴 𝐷 𝐵 ) ) |
| 20 | 8 19 | breqtrd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝐵 ) ≤ ( 𝐴 𝐷 𝐵 ) ) |