This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a metric space is closed iff every convergent sequence on it converges to a point in the subset. Theorem 1.4-6(b) of Kreyszig p. 30. (Contributed by Mario Carneiro, 1-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metcld.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | metcld2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝑆 ↑m ℕ ) ) ⊆ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metcld.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | 1 | metcld | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ∀ 𝑥 ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑆 ) ) ) |
| 3 | 19.23v | ⊢ ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑆 ) ↔ ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑆 ) ) | |
| 4 | vex | ⊢ 𝑥 ∈ V | |
| 5 | 4 | elima2 | ⊢ ( 𝑥 ∈ ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝑆 ↑m ℕ ) ) ↔ ∃ 𝑓 ( 𝑓 ∈ ( 𝑆 ↑m ℕ ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) |
| 6 | id | ⊢ ( 𝑆 ⊆ 𝑋 → 𝑆 ⊆ 𝑋 ) | |
| 7 | elfvdm | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) | |
| 8 | ssexg | ⊢ ( ( 𝑆 ⊆ 𝑋 ∧ 𝑋 ∈ dom ∞Met ) → 𝑆 ∈ V ) | |
| 9 | 6 7 8 | syl2anr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ∈ V ) |
| 10 | nnex | ⊢ ℕ ∈ V | |
| 11 | elmapg | ⊢ ( ( 𝑆 ∈ V ∧ ℕ ∈ V ) → ( 𝑓 ∈ ( 𝑆 ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ 𝑆 ) ) | |
| 12 | 9 10 11 | sylancl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑓 ∈ ( 𝑆 ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ 𝑆 ) ) |
| 13 | 12 | anbi1d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑓 ∈ ( 𝑆 ↑m ℕ ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ↔ ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) ) |
| 14 | 13 | exbidv | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ∃ 𝑓 ( 𝑓 ∈ ( 𝑆 ↑m ℕ ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) ) |
| 15 | 5 14 | bitr2id | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ↔ 𝑥 ∈ ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝑆 ↑m ℕ ) ) ) ) |
| 16 | 15 | imbi1d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑆 ) ↔ ( 𝑥 ∈ ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝑆 ↑m ℕ ) ) → 𝑥 ∈ 𝑆 ) ) ) |
| 17 | 3 16 | bitrid | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑆 ) ↔ ( 𝑥 ∈ ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝑆 ↑m ℕ ) ) → 𝑥 ∈ 𝑆 ) ) ) |
| 18 | 17 | albidv | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ∀ 𝑥 ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑆 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝑆 ↑m ℕ ) ) → 𝑥 ∈ 𝑆 ) ) ) |
| 19 | df-ss | ⊢ ( ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝑆 ↑m ℕ ) ) ⊆ 𝑆 ↔ ∀ 𝑥 ( 𝑥 ∈ ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝑆 ↑m ℕ ) ) → 𝑥 ∈ 𝑆 ) ) | |
| 20 | 18 19 | bitr4di | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ∀ 𝑥 ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑆 ) ↔ ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝑆 ↑m ℕ ) ) ⊆ 𝑆 ) ) |
| 21 | 2 20 | bitrd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( ⇝𝑡 ‘ 𝐽 ) “ ( 𝑆 ↑m ℕ ) ) ⊆ 𝑆 ) ) |