This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a metric space is closed iff every convergent sequence on it converges to a point in the subset. Theorem 1.4-6(b) of Kreyszig p. 30. (Contributed by Mario Carneiro, 1-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metcld.2 | |- J = ( MetOpen ` D ) |
|
| Assertion | metcld2 | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( S e. ( Clsd ` J ) <-> ( ( ~~>t ` J ) " ( S ^m NN ) ) C_ S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metcld.2 | |- J = ( MetOpen ` D ) |
|
| 2 | 1 | metcld | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( S e. ( Clsd ` J ) <-> A. x A. f ( ( f : NN --> S /\ f ( ~~>t ` J ) x ) -> x e. S ) ) ) |
| 3 | 19.23v | |- ( A. f ( ( f : NN --> S /\ f ( ~~>t ` J ) x ) -> x e. S ) <-> ( E. f ( f : NN --> S /\ f ( ~~>t ` J ) x ) -> x e. S ) ) |
|
| 4 | vex | |- x e. _V |
|
| 5 | 4 | elima2 | |- ( x e. ( ( ~~>t ` J ) " ( S ^m NN ) ) <-> E. f ( f e. ( S ^m NN ) /\ f ( ~~>t ` J ) x ) ) |
| 6 | id | |- ( S C_ X -> S C_ X ) |
|
| 7 | elfvdm | |- ( D e. ( *Met ` X ) -> X e. dom *Met ) |
|
| 8 | ssexg | |- ( ( S C_ X /\ X e. dom *Met ) -> S e. _V ) |
|
| 9 | 6 7 8 | syl2anr | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> S e. _V ) |
| 10 | nnex | |- NN e. _V |
|
| 11 | elmapg | |- ( ( S e. _V /\ NN e. _V ) -> ( f e. ( S ^m NN ) <-> f : NN --> S ) ) |
|
| 12 | 9 10 11 | sylancl | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( f e. ( S ^m NN ) <-> f : NN --> S ) ) |
| 13 | 12 | anbi1d | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( ( f e. ( S ^m NN ) /\ f ( ~~>t ` J ) x ) <-> ( f : NN --> S /\ f ( ~~>t ` J ) x ) ) ) |
| 14 | 13 | exbidv | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( E. f ( f e. ( S ^m NN ) /\ f ( ~~>t ` J ) x ) <-> E. f ( f : NN --> S /\ f ( ~~>t ` J ) x ) ) ) |
| 15 | 5 14 | bitr2id | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( E. f ( f : NN --> S /\ f ( ~~>t ` J ) x ) <-> x e. ( ( ~~>t ` J ) " ( S ^m NN ) ) ) ) |
| 16 | 15 | imbi1d | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( ( E. f ( f : NN --> S /\ f ( ~~>t ` J ) x ) -> x e. S ) <-> ( x e. ( ( ~~>t ` J ) " ( S ^m NN ) ) -> x e. S ) ) ) |
| 17 | 3 16 | bitrid | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( A. f ( ( f : NN --> S /\ f ( ~~>t ` J ) x ) -> x e. S ) <-> ( x e. ( ( ~~>t ` J ) " ( S ^m NN ) ) -> x e. S ) ) ) |
| 18 | 17 | albidv | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( A. x A. f ( ( f : NN --> S /\ f ( ~~>t ` J ) x ) -> x e. S ) <-> A. x ( x e. ( ( ~~>t ` J ) " ( S ^m NN ) ) -> x e. S ) ) ) |
| 19 | df-ss | |- ( ( ( ~~>t ` J ) " ( S ^m NN ) ) C_ S <-> A. x ( x e. ( ( ~~>t ` J ) " ( S ^m NN ) ) -> x e. S ) ) |
|
| 20 | 18 19 | bitr4di | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( A. x A. f ( ( f : NN --> S /\ f ( ~~>t ` J ) x ) -> x e. S ) <-> ( ( ~~>t ` J ) " ( S ^m NN ) ) C_ S ) ) |
| 21 | 2 20 | bitrd | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( S e. ( Clsd ` J ) <-> ( ( ~~>t ` J ) " ( S ^m NN ) ) C_ S ) ) |