This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a metric space is closed iff every convergent sequence on it converges to a point in the subset. Theorem 1.4-6(b) of Kreyszig p. 30. (Contributed by NM, 11-Nov-2007) (Revised by Mario Carneiro, 1-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metcld.2 | |- J = ( MetOpen ` D ) |
|
| Assertion | metcld | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( S e. ( Clsd ` J ) <-> A. x A. f ( ( f : NN --> S /\ f ( ~~>t ` J ) x ) -> x e. S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metcld.2 | |- J = ( MetOpen ` D ) |
|
| 2 | 1 | mopntop | |- ( D e. ( *Met ` X ) -> J e. Top ) |
| 3 | 1 | mopnuni | |- ( D e. ( *Met ` X ) -> X = U. J ) |
| 4 | 3 | sseq2d | |- ( D e. ( *Met ` X ) -> ( S C_ X <-> S C_ U. J ) ) |
| 5 | 4 | biimpa | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> S C_ U. J ) |
| 6 | eqid | |- U. J = U. J |
|
| 7 | 6 | iscld4 | |- ( ( J e. Top /\ S C_ U. J ) -> ( S e. ( Clsd ` J ) <-> ( ( cls ` J ) ` S ) C_ S ) ) |
| 8 | 2 5 7 | syl2an2r | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( S e. ( Clsd ` J ) <-> ( ( cls ` J ) ` S ) C_ S ) ) |
| 9 | 19.23v | |- ( A. f ( ( f : NN --> S /\ f ( ~~>t ` J ) x ) -> x e. S ) <-> ( E. f ( f : NN --> S /\ f ( ~~>t ` J ) x ) -> x e. S ) ) |
|
| 10 | simpl | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> D e. ( *Met ` X ) ) |
|
| 11 | simpr | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> S C_ X ) |
|
| 12 | 1 10 11 | metelcls | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( x e. ( ( cls ` J ) ` S ) <-> E. f ( f : NN --> S /\ f ( ~~>t ` J ) x ) ) ) |
| 13 | 12 | imbi1d | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( ( x e. ( ( cls ` J ) ` S ) -> x e. S ) <-> ( E. f ( f : NN --> S /\ f ( ~~>t ` J ) x ) -> x e. S ) ) ) |
| 14 | 9 13 | bitr4id | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( A. f ( ( f : NN --> S /\ f ( ~~>t ` J ) x ) -> x e. S ) <-> ( x e. ( ( cls ` J ) ` S ) -> x e. S ) ) ) |
| 15 | 14 | albidv | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( A. x A. f ( ( f : NN --> S /\ f ( ~~>t ` J ) x ) -> x e. S ) <-> A. x ( x e. ( ( cls ` J ) ` S ) -> x e. S ) ) ) |
| 16 | df-ss | |- ( ( ( cls ` J ) ` S ) C_ S <-> A. x ( x e. ( ( cls ` J ) ` S ) -> x e. S ) ) |
|
| 17 | 15 16 | bitr4di | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( A. x A. f ( ( f : NN --> S /\ f ( ~~>t ` J ) x ) -> x e. S ) <-> ( ( cls ` J ) ` S ) C_ S ) ) |
| 18 | 8 17 | bitr4d | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> ( S e. ( Clsd ` J ) <-> A. x A. f ( ( f : NN --> S /\ f ( ~~>t ` J ) x ) -> x e. S ) ) ) |