This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the conventional membership case of partition. Partition A of X , Halmos p. 28: "A partition of X is a disjoint collection A of non-empty subsets of X whose union is X ", or Definition 35, Suppes p. 83., cf. https://oeis.org/A000110 . (Contributed by Peter Mazsa, 14-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfmembpart2 | ⊢ ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-membpart | ⊢ ( MembPart 𝐴 ↔ ( ◡ E ↾ 𝐴 ) Part 𝐴 ) | |
| 2 | df-part | ⊢ ( ( ◡ E ↾ 𝐴 ) Part 𝐴 ↔ ( Disj ( ◡ E ↾ 𝐴 ) ∧ ( ◡ E ↾ 𝐴 ) DomainQs 𝐴 ) ) | |
| 3 | df-eldisj | ⊢ ( ElDisj 𝐴 ↔ Disj ( ◡ E ↾ 𝐴 ) ) | |
| 4 | 3 | bicomi | ⊢ ( Disj ( ◡ E ↾ 𝐴 ) ↔ ElDisj 𝐴 ) |
| 5 | cnvepresdmqs | ⊢ ( ( ◡ E ↾ 𝐴 ) DomainQs 𝐴 ↔ ¬ ∅ ∈ 𝐴 ) | |
| 6 | 4 5 | anbi12i | ⊢ ( ( Disj ( ◡ E ↾ 𝐴 ) ∧ ( ◡ E ↾ 𝐴 ) DomainQs 𝐴 ) ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) ) |
| 7 | 1 2 6 | 3bitri | ⊢ ( MembPart 𝐴 ↔ ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) ) |