This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for meetval2 and meeteu . (Contributed by NM, 12-Sep-2018) TODO: combine this through meeteu into meetlem ?
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meetval2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| meetval2.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| meetval2.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| meetval2.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| meetval2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| meetval2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | meetval2lem | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ↔ ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetval2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | meetval2.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | meetval2.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 4 | meetval2.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 5 | meetval2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | meetval2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | breq2 | ⊢ ( 𝑦 = 𝑋 → ( 𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝑋 ) ) | |
| 8 | breq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝑌 ) ) | |
| 9 | 7 8 | ralprg | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 ≤ 𝑦 ↔ ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ) ) |
| 10 | breq2 | ⊢ ( 𝑦 = 𝑋 → ( 𝑧 ≤ 𝑦 ↔ 𝑧 ≤ 𝑋 ) ) | |
| 11 | breq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑧 ≤ 𝑦 ↔ 𝑧 ≤ 𝑌 ) ) | |
| 12 | 10 11 | ralprg | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 ≤ 𝑦 ↔ ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) ) ) |
| 13 | 12 | imbi1d | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ↔ ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) |
| 14 | 13 | ralbidv | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ↔ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) |
| 15 | 9 14 | anbi12d | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ↔ ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) ) |