This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for meetval2 and meeteu . (Contributed by NM, 12-Sep-2018) TODO: combine this through meeteu into meetlem ?
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meetval2.b | |- B = ( Base ` K ) |
|
| meetval2.l | |- .<_ = ( le ` K ) |
||
| meetval2.m | |- ./\ = ( meet ` K ) |
||
| meetval2.k | |- ( ph -> K e. V ) |
||
| meetval2.x | |- ( ph -> X e. B ) |
||
| meetval2.y | |- ( ph -> Y e. B ) |
||
| Assertion | meetval2lem | |- ( ( X e. B /\ Y e. B ) -> ( ( A. y e. { X , Y } x .<_ y /\ A. z e. B ( A. y e. { X , Y } z .<_ y -> z .<_ x ) ) <-> ( ( x .<_ X /\ x .<_ Y ) /\ A. z e. B ( ( z .<_ X /\ z .<_ Y ) -> z .<_ x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetval2.b | |- B = ( Base ` K ) |
|
| 2 | meetval2.l | |- .<_ = ( le ` K ) |
|
| 3 | meetval2.m | |- ./\ = ( meet ` K ) |
|
| 4 | meetval2.k | |- ( ph -> K e. V ) |
|
| 5 | meetval2.x | |- ( ph -> X e. B ) |
|
| 6 | meetval2.y | |- ( ph -> Y e. B ) |
|
| 7 | breq2 | |- ( y = X -> ( x .<_ y <-> x .<_ X ) ) |
|
| 8 | breq2 | |- ( y = Y -> ( x .<_ y <-> x .<_ Y ) ) |
|
| 9 | 7 8 | ralprg | |- ( ( X e. B /\ Y e. B ) -> ( A. y e. { X , Y } x .<_ y <-> ( x .<_ X /\ x .<_ Y ) ) ) |
| 10 | breq2 | |- ( y = X -> ( z .<_ y <-> z .<_ X ) ) |
|
| 11 | breq2 | |- ( y = Y -> ( z .<_ y <-> z .<_ Y ) ) |
|
| 12 | 10 11 | ralprg | |- ( ( X e. B /\ Y e. B ) -> ( A. y e. { X , Y } z .<_ y <-> ( z .<_ X /\ z .<_ Y ) ) ) |
| 13 | 12 | imbi1d | |- ( ( X e. B /\ Y e. B ) -> ( ( A. y e. { X , Y } z .<_ y -> z .<_ x ) <-> ( ( z .<_ X /\ z .<_ Y ) -> z .<_ x ) ) ) |
| 14 | 13 | ralbidv | |- ( ( X e. B /\ Y e. B ) -> ( A. z e. B ( A. y e. { X , Y } z .<_ y -> z .<_ x ) <-> A. z e. B ( ( z .<_ X /\ z .<_ Y ) -> z .<_ x ) ) ) |
| 15 | 9 14 | anbi12d | |- ( ( X e. B /\ Y e. B ) -> ( ( A. y e. { X , Y } x .<_ y /\ A. z e. B ( A. y e. { X , Y } z .<_ y -> z .<_ x ) ) <-> ( ( x .<_ X /\ x .<_ Y ) /\ A. z e. B ( ( z .<_ X /\ z .<_ Y ) -> z .<_ x ) ) ) ) |