This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of meet for a poset with LUB expanded. (Contributed by NM, 16-Sep-2011) (Revised by NM, 11-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meetval2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| meetval2.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| meetval2.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| meetval2.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| meetval2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| meetval2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | meetval2 | ⊢ ( 𝜑 → ( 𝑋 ∧ 𝑌 ) = ( ℩ 𝑥 ∈ 𝐵 ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetval2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | meetval2.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | meetval2.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 4 | meetval2.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 5 | meetval2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | meetval2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | eqid | ⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) | |
| 8 | 7 3 4 5 6 | meetval | ⊢ ( 𝜑 → ( 𝑋 ∧ 𝑌 ) = ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) |
| 9 | biid | ⊢ ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) | |
| 10 | 5 6 | prssd | ⊢ ( 𝜑 → { 𝑋 , 𝑌 } ⊆ 𝐵 ) |
| 11 | 1 2 7 9 4 10 | glbval | ⊢ ( 𝜑 → ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) = ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) ) |
| 12 | 1 2 3 4 5 6 | meetval2lem | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ↔ ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) ) |
| 13 | 12 | riotabidv | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) = ( ℩ 𝑥 ∈ 𝐵 ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) ) |
| 14 | 5 6 13 | syl2anc | ⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) = ( ℩ 𝑥 ∈ 𝐵 ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) ) |
| 15 | 8 11 14 | 3eqtrd | ⊢ ( 𝜑 → ( 𝑋 ∧ 𝑌 ) = ( ℩ 𝑥 ∈ 𝐵 ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) ) |