This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Uniqueness of meet of elements in the domain. (Contributed by NM, 12-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meetval2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| meetval2.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| meetval2.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| meetval2.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| meetval2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| meetval2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| meetlem.e | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ) | ||
| Assertion | meeteu | ⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝐵 ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetval2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | meetval2.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | meetval2.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 4 | meetval2.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 5 | meetval2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | meetval2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | meetlem.e | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ) | |
| 8 | eqid | ⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) | |
| 9 | 8 3 4 5 6 | meetdef | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ↔ { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) ) ) |
| 10 | biid | ⊢ ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) | |
| 11 | 4 | adantr | ⊢ ( ( 𝜑 ∧ { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) ) → 𝐾 ∈ 𝑉 ) |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) ) → { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) ) | |
| 13 | 1 2 8 10 11 12 | glbeu | ⊢ ( ( 𝜑 ∧ { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) ) → ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) |
| 14 | 13 | ex | ⊢ ( 𝜑 → ( { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) → ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ) ) |
| 15 | 1 2 3 4 5 6 | meetval2lem | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ↔ ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) ) |
| 16 | 5 6 15 | syl2anc | ⊢ ( 𝜑 → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ↔ ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) ) |
| 17 | 16 | reubidv | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑥 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥 ) ) ↔ ∃! 𝑥 ∈ 𝐵 ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) ) |
| 18 | 14 17 | sylibd | ⊢ ( 𝜑 → ( { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) → ∃! 𝑥 ∈ 𝐵 ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) ) |
| 19 | 9 18 | sylbid | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ∈ dom ∧ → ∃! 𝑥 ∈ 𝐵 ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) ) |
| 20 | 7 19 | mpd | ⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝐵 ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) |