This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for meet properties. (Contributed by NM, 16-Sep-2011) (Revised by NM, 12-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meetval2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| meetval2.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| meetval2.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| meetval2.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| meetval2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| meetval2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| meetlem.e | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ) | ||
| Assertion | meetlem | ⊢ ( 𝜑 → ( ( ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ ( 𝑋 ∧ 𝑌 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetval2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | meetval2.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | meetval2.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 4 | meetval2.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 5 | meetval2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | meetval2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | meetlem.e | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ) | |
| 8 | 1 2 3 4 5 6 7 | meeteu | ⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝐵 ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) |
| 9 | riotasbc | ⊢ ( ∃! 𝑥 ∈ 𝐵 ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) → [ ( ℩ 𝑥 ∈ 𝐵 ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) / 𝑥 ] ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → [ ( ℩ 𝑥 ∈ 𝐵 ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) / 𝑥 ] ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) |
| 11 | 1 2 3 4 5 6 | meetval2 | ⊢ ( 𝜑 → ( 𝑋 ∧ 𝑌 ) = ( ℩ 𝑥 ∈ 𝐵 ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) ) |
| 12 | 11 | sbceq1d | ⊢ ( 𝜑 → ( [ ( 𝑋 ∧ 𝑌 ) / 𝑥 ] ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ↔ [ ( ℩ 𝑥 ∈ 𝐵 ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) / 𝑥 ] ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) ) |
| 13 | 10 12 | mpbird | ⊢ ( 𝜑 → [ ( 𝑋 ∧ 𝑌 ) / 𝑥 ] ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ) |
| 14 | ovex | ⊢ ( 𝑋 ∧ 𝑌 ) ∈ V | |
| 15 | breq1 | ⊢ ( 𝑥 = ( 𝑋 ∧ 𝑌 ) → ( 𝑥 ≤ 𝑋 ↔ ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ) ) | |
| 16 | breq1 | ⊢ ( 𝑥 = ( 𝑋 ∧ 𝑌 ) → ( 𝑥 ≤ 𝑌 ↔ ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) ) | |
| 17 | 15 16 | anbi12d | ⊢ ( 𝑥 = ( 𝑋 ∧ 𝑌 ) → ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ↔ ( ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) ) ) |
| 18 | breq2 | ⊢ ( 𝑥 = ( 𝑋 ∧ 𝑌 ) → ( 𝑧 ≤ 𝑥 ↔ 𝑧 ≤ ( 𝑋 ∧ 𝑌 ) ) ) | |
| 19 | 18 | imbi2d | ⊢ ( 𝑥 = ( 𝑋 ∧ 𝑌 ) → ( ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ↔ ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ ( 𝑋 ∧ 𝑌 ) ) ) ) |
| 20 | 19 | ralbidv | ⊢ ( 𝑥 = ( 𝑋 ∧ 𝑌 ) → ( ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ↔ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ ( 𝑋 ∧ 𝑌 ) ) ) ) |
| 21 | 17 20 | anbi12d | ⊢ ( 𝑥 = ( 𝑋 ∧ 𝑌 ) → ( ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ↔ ( ( ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ ( 𝑋 ∧ 𝑌 ) ) ) ) ) |
| 22 | 14 21 | sbcie | ⊢ ( [ ( 𝑋 ∧ 𝑌 ) / 𝑥 ] ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ 𝑥 ) ) ↔ ( ( ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ ( 𝑋 ∧ 𝑌 ) ) ) ) |
| 23 | 13 22 | sylib | ⊢ ( 𝜑 → ( ( ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ ( 𝑋 ∧ 𝑌 ) ) ) ) |