This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A meet is less than or equal to a third value iff each argument is less than or equal to the third value. (Contributed by NM, 16-Sep-2011) (Revised by NM, 12-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meetle.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| meetle.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| meetle.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| meetle.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | ||
| meetle.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| meetle.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| meetle.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| meetle.e | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ) | ||
| Assertion | meetle | ⊢ ( 𝜑 → ( ( 𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌 ) ↔ 𝑍 ≤ ( 𝑋 ∧ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetle.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | meetle.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | meetle.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 4 | meetle.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | |
| 5 | meetle.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | meetle.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | meetle.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 8 | meetle.e | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ) | |
| 9 | breq1 | ⊢ ( 𝑧 = 𝑍 → ( 𝑧 ≤ 𝑋 ↔ 𝑍 ≤ 𝑋 ) ) | |
| 10 | breq1 | ⊢ ( 𝑧 = 𝑍 → ( 𝑧 ≤ 𝑌 ↔ 𝑍 ≤ 𝑌 ) ) | |
| 11 | 9 10 | anbi12d | ⊢ ( 𝑧 = 𝑍 → ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) ↔ ( 𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌 ) ) ) |
| 12 | breq1 | ⊢ ( 𝑧 = 𝑍 → ( 𝑧 ≤ ( 𝑋 ∧ 𝑌 ) ↔ 𝑍 ≤ ( 𝑋 ∧ 𝑌 ) ) ) | |
| 13 | 11 12 | imbi12d | ⊢ ( 𝑧 = 𝑍 → ( ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ ( 𝑋 ∧ 𝑌 ) ) ↔ ( ( 𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌 ) → 𝑍 ≤ ( 𝑋 ∧ 𝑌 ) ) ) ) |
| 14 | 1 2 3 4 5 6 8 | meetlem | ⊢ ( 𝜑 → ( ( ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ ( 𝑋 ∧ 𝑌 ) ) ) ) |
| 15 | 14 | simprd | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌 ) → 𝑧 ≤ ( 𝑋 ∧ 𝑌 ) ) ) |
| 16 | 13 15 7 | rspcdva | ⊢ ( 𝜑 → ( ( 𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌 ) → 𝑍 ≤ ( 𝑋 ∧ 𝑌 ) ) ) |
| 17 | 1 2 3 4 5 6 8 | lemeet1 | ⊢ ( 𝜑 → ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ) |
| 18 | 1 3 4 5 6 8 | meetcl | ⊢ ( 𝜑 → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 19 | 1 2 | postr | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑍 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑍 ≤ ( 𝑋 ∧ 𝑌 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ) → 𝑍 ≤ 𝑋 ) ) |
| 20 | 4 7 18 5 19 | syl13anc | ⊢ ( 𝜑 → ( ( 𝑍 ≤ ( 𝑋 ∧ 𝑌 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ) → 𝑍 ≤ 𝑋 ) ) |
| 21 | 17 20 | mpan2d | ⊢ ( 𝜑 → ( 𝑍 ≤ ( 𝑋 ∧ 𝑌 ) → 𝑍 ≤ 𝑋 ) ) |
| 22 | 1 2 3 4 5 6 8 | lemeet2 | ⊢ ( 𝜑 → ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) |
| 23 | 1 2 | postr | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑍 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑍 ≤ ( 𝑋 ∧ 𝑌 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) → 𝑍 ≤ 𝑌 ) ) |
| 24 | 4 7 18 6 23 | syl13anc | ⊢ ( 𝜑 → ( ( 𝑍 ≤ ( 𝑋 ∧ 𝑌 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) → 𝑍 ≤ 𝑌 ) ) |
| 25 | 22 24 | mpan2d | ⊢ ( 𝜑 → ( 𝑍 ≤ ( 𝑋 ∧ 𝑌 ) → 𝑍 ≤ 𝑌 ) ) |
| 26 | 21 25 | jcad | ⊢ ( 𝜑 → ( 𝑍 ≤ ( 𝑋 ∧ 𝑌 ) → ( 𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌 ) ) ) |
| 27 | 16 26 | impbid | ⊢ ( 𝜑 → ( ( 𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌 ) ↔ 𝑍 ≤ ( 𝑋 ∧ 𝑌 ) ) ) |