This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of meet of elements in the domain. (Contributed by NM, 12-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meetcl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| meetcl.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| meetcl.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| meetcl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| meetcl.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| meetcl.e | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ) | ||
| Assertion | meetcl | ⊢ ( 𝜑 → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetcl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | meetcl.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 3 | meetcl.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 4 | meetcl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | meetcl.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | meetcl.e | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ) | |
| 7 | eqid | ⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) | |
| 8 | 7 2 3 4 5 | meetval | ⊢ ( 𝜑 → ( 𝑋 ∧ 𝑌 ) = ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) |
| 9 | 7 2 3 4 5 | meetdef | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ↔ { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) ) ) |
| 10 | 6 9 | mpbid | ⊢ ( 𝜑 → { 𝑋 , 𝑌 } ∈ dom ( glb ‘ 𝐾 ) ) |
| 11 | 1 7 3 10 | glbcl | ⊢ ( 𝜑 → ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ∈ 𝐵 ) |
| 12 | 8 11 | eqeltrd | ⊢ ( 𝜑 → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |