This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A meet is less than or equal to a third value iff each argument is less than or equal to the third value. (Contributed by NM, 16-Sep-2011) (Revised by NM, 12-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meetle.b | |- B = ( Base ` K ) |
|
| meetle.l | |- .<_ = ( le ` K ) |
||
| meetle.m | |- ./\ = ( meet ` K ) |
||
| meetle.k | |- ( ph -> K e. Poset ) |
||
| meetle.x | |- ( ph -> X e. B ) |
||
| meetle.y | |- ( ph -> Y e. B ) |
||
| meetle.z | |- ( ph -> Z e. B ) |
||
| meetle.e | |- ( ph -> <. X , Y >. e. dom ./\ ) |
||
| Assertion | meetle | |- ( ph -> ( ( Z .<_ X /\ Z .<_ Y ) <-> Z .<_ ( X ./\ Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetle.b | |- B = ( Base ` K ) |
|
| 2 | meetle.l | |- .<_ = ( le ` K ) |
|
| 3 | meetle.m | |- ./\ = ( meet ` K ) |
|
| 4 | meetle.k | |- ( ph -> K e. Poset ) |
|
| 5 | meetle.x | |- ( ph -> X e. B ) |
|
| 6 | meetle.y | |- ( ph -> Y e. B ) |
|
| 7 | meetle.z | |- ( ph -> Z e. B ) |
|
| 8 | meetle.e | |- ( ph -> <. X , Y >. e. dom ./\ ) |
|
| 9 | breq1 | |- ( z = Z -> ( z .<_ X <-> Z .<_ X ) ) |
|
| 10 | breq1 | |- ( z = Z -> ( z .<_ Y <-> Z .<_ Y ) ) |
|
| 11 | 9 10 | anbi12d | |- ( z = Z -> ( ( z .<_ X /\ z .<_ Y ) <-> ( Z .<_ X /\ Z .<_ Y ) ) ) |
| 12 | breq1 | |- ( z = Z -> ( z .<_ ( X ./\ Y ) <-> Z .<_ ( X ./\ Y ) ) ) |
|
| 13 | 11 12 | imbi12d | |- ( z = Z -> ( ( ( z .<_ X /\ z .<_ Y ) -> z .<_ ( X ./\ Y ) ) <-> ( ( Z .<_ X /\ Z .<_ Y ) -> Z .<_ ( X ./\ Y ) ) ) ) |
| 14 | 1 2 3 4 5 6 8 | meetlem | |- ( ph -> ( ( ( X ./\ Y ) .<_ X /\ ( X ./\ Y ) .<_ Y ) /\ A. z e. B ( ( z .<_ X /\ z .<_ Y ) -> z .<_ ( X ./\ Y ) ) ) ) |
| 15 | 14 | simprd | |- ( ph -> A. z e. B ( ( z .<_ X /\ z .<_ Y ) -> z .<_ ( X ./\ Y ) ) ) |
| 16 | 13 15 7 | rspcdva | |- ( ph -> ( ( Z .<_ X /\ Z .<_ Y ) -> Z .<_ ( X ./\ Y ) ) ) |
| 17 | 1 2 3 4 5 6 8 | lemeet1 | |- ( ph -> ( X ./\ Y ) .<_ X ) |
| 18 | 1 3 4 5 6 8 | meetcl | |- ( ph -> ( X ./\ Y ) e. B ) |
| 19 | 1 2 | postr | |- ( ( K e. Poset /\ ( Z e. B /\ ( X ./\ Y ) e. B /\ X e. B ) ) -> ( ( Z .<_ ( X ./\ Y ) /\ ( X ./\ Y ) .<_ X ) -> Z .<_ X ) ) |
| 20 | 4 7 18 5 19 | syl13anc | |- ( ph -> ( ( Z .<_ ( X ./\ Y ) /\ ( X ./\ Y ) .<_ X ) -> Z .<_ X ) ) |
| 21 | 17 20 | mpan2d | |- ( ph -> ( Z .<_ ( X ./\ Y ) -> Z .<_ X ) ) |
| 22 | 1 2 3 4 5 6 8 | lemeet2 | |- ( ph -> ( X ./\ Y ) .<_ Y ) |
| 23 | 1 2 | postr | |- ( ( K e. Poset /\ ( Z e. B /\ ( X ./\ Y ) e. B /\ Y e. B ) ) -> ( ( Z .<_ ( X ./\ Y ) /\ ( X ./\ Y ) .<_ Y ) -> Z .<_ Y ) ) |
| 24 | 4 7 18 6 23 | syl13anc | |- ( ph -> ( ( Z .<_ ( X ./\ Y ) /\ ( X ./\ Y ) .<_ Y ) -> Z .<_ Y ) ) |
| 25 | 22 24 | mpan2d | |- ( ph -> ( Z .<_ ( X ./\ Y ) -> Z .<_ Y ) ) |
| 26 | 21 25 | jcad | |- ( ph -> ( Z .<_ ( X ./\ Y ) -> ( Z .<_ X /\ Z .<_ Y ) ) ) |
| 27 | 16 26 | impbid | |- ( ph -> ( ( Z .<_ X /\ Z .<_ Y ) <-> Z .<_ ( X ./\ Y ) ) ) |