This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The meet of any element with an atom is either the atom or zero. (Contributed by NM, 28-Aug-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | m.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| m.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| m.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| m.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | meetat | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑋 ∧ 𝑃 ) = 𝑃 ∨ ( 𝑋 ∧ 𝑃 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | m.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | m.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 3 | m.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 4 | m.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 5 | ollat | ⊢ ( 𝐾 ∈ OL → 𝐾 ∈ Lat ) | |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 𝐾 ∈ Lat ) |
| 7 | simp2 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | |
| 8 | simp3 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ∈ 𝐴 ) | |
| 9 | 1 4 | atbase | ⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
| 10 | 8 9 | syl | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ∈ 𝐵 ) |
| 11 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 12 | 1 11 2 | latmle2 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑃 ) ( le ‘ 𝐾 ) 𝑃 ) |
| 13 | 6 7 10 12 | syl3anc | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ∧ 𝑃 ) ( le ‘ 𝐾 ) 𝑃 ) |
| 14 | olop | ⊢ ( 𝐾 ∈ OL → 𝐾 ∈ OP ) | |
| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 𝐾 ∈ OP ) |
| 16 | 1 2 | latmcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑃 ) ∈ 𝐵 ) |
| 17 | 6 7 10 16 | syl3anc | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ∧ 𝑃 ) ∈ 𝐵 ) |
| 18 | 1 11 3 4 | leatb | ⊢ ( ( 𝐾 ∈ OP ∧ ( 𝑋 ∧ 𝑃 ) ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑋 ∧ 𝑃 ) ( le ‘ 𝐾 ) 𝑃 ↔ ( ( 𝑋 ∧ 𝑃 ) = 𝑃 ∨ ( 𝑋 ∧ 𝑃 ) = 0 ) ) ) |
| 19 | 15 17 8 18 | syl3anc | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑋 ∧ 𝑃 ) ( le ‘ 𝐾 ) 𝑃 ↔ ( ( 𝑋 ∧ 𝑃 ) = 𝑃 ∨ ( 𝑋 ∧ 𝑃 ) = 0 ) ) ) |
| 20 | 13 19 | mpbid | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑋 ∧ 𝑃 ) = 𝑃 ∨ ( 𝑋 ∧ 𝑃 ) = 0 ) ) |