This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The meet of any element with an atom is either the atom or zero. (Contributed by NM, 28-Aug-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | m.b | |- B = ( Base ` K ) |
|
| m.m | |- ./\ = ( meet ` K ) |
||
| m.z | |- .0. = ( 0. ` K ) |
||
| m.a | |- A = ( Atoms ` K ) |
||
| Assertion | meetat | |- ( ( K e. OL /\ X e. B /\ P e. A ) -> ( ( X ./\ P ) = P \/ ( X ./\ P ) = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | m.b | |- B = ( Base ` K ) |
|
| 2 | m.m | |- ./\ = ( meet ` K ) |
|
| 3 | m.z | |- .0. = ( 0. ` K ) |
|
| 4 | m.a | |- A = ( Atoms ` K ) |
|
| 5 | ollat | |- ( K e. OL -> K e. Lat ) |
|
| 6 | 5 | 3ad2ant1 | |- ( ( K e. OL /\ X e. B /\ P e. A ) -> K e. Lat ) |
| 7 | simp2 | |- ( ( K e. OL /\ X e. B /\ P e. A ) -> X e. B ) |
|
| 8 | simp3 | |- ( ( K e. OL /\ X e. B /\ P e. A ) -> P e. A ) |
|
| 9 | 1 4 | atbase | |- ( P e. A -> P e. B ) |
| 10 | 8 9 | syl | |- ( ( K e. OL /\ X e. B /\ P e. A ) -> P e. B ) |
| 11 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 12 | 1 11 2 | latmle2 | |- ( ( K e. Lat /\ X e. B /\ P e. B ) -> ( X ./\ P ) ( le ` K ) P ) |
| 13 | 6 7 10 12 | syl3anc | |- ( ( K e. OL /\ X e. B /\ P e. A ) -> ( X ./\ P ) ( le ` K ) P ) |
| 14 | olop | |- ( K e. OL -> K e. OP ) |
|
| 15 | 14 | 3ad2ant1 | |- ( ( K e. OL /\ X e. B /\ P e. A ) -> K e. OP ) |
| 16 | 1 2 | latmcl | |- ( ( K e. Lat /\ X e. B /\ P e. B ) -> ( X ./\ P ) e. B ) |
| 17 | 6 7 10 16 | syl3anc | |- ( ( K e. OL /\ X e. B /\ P e. A ) -> ( X ./\ P ) e. B ) |
| 18 | 1 11 3 4 | leatb | |- ( ( K e. OP /\ ( X ./\ P ) e. B /\ P e. A ) -> ( ( X ./\ P ) ( le ` K ) P <-> ( ( X ./\ P ) = P \/ ( X ./\ P ) = .0. ) ) ) |
| 19 | 15 17 8 18 | syl3anc | |- ( ( K e. OL /\ X e. B /\ P e. A ) -> ( ( X ./\ P ) ( le ` K ) P <-> ( ( X ./\ P ) = P \/ ( X ./\ P ) = .0. ) ) ) |
| 20 | 13 19 | mpbid | |- ( ( K e. OL /\ X e. B /\ P e. A ) -> ( ( X ./\ P ) = P \/ ( X ./\ P ) = .0. ) ) |