This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The meet of any element with an atom is either the atom or zero. (Contributed by NM, 30-Aug-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | m.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| m.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| m.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| m.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | meetat2 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑋 ∧ 𝑃 ) ∈ 𝐴 ∨ ( 𝑋 ∧ 𝑃 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | m.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | m.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 3 | m.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 4 | m.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 5 | 1 2 3 4 | meetat | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑋 ∧ 𝑃 ) = 𝑃 ∨ ( 𝑋 ∧ 𝑃 ) = 0 ) ) |
| 6 | eleq1a | ⊢ ( 𝑃 ∈ 𝐴 → ( ( 𝑋 ∧ 𝑃 ) = 𝑃 → ( 𝑋 ∧ 𝑃 ) ∈ 𝐴 ) ) | |
| 7 | 6 | 3ad2ant3 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑋 ∧ 𝑃 ) = 𝑃 → ( 𝑋 ∧ 𝑃 ) ∈ 𝐴 ) ) |
| 8 | 7 | orim1d | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ( ( 𝑋 ∧ 𝑃 ) = 𝑃 ∨ ( 𝑋 ∧ 𝑃 ) = 0 ) → ( ( 𝑋 ∧ 𝑃 ) ∈ 𝐴 ∨ ( 𝑋 ∧ 𝑃 ) = 0 ) ) ) |
| 9 | 5 8 | mpd | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑋 ∧ 𝑃 ) ∈ 𝐴 ∨ ( 𝑋 ∧ 𝑃 ) = 0 ) ) |