This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mdetuni . (Contributed by SO, 14-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetuni.a | |- A = ( N Mat R ) |
|
| mdetuni.b | |- B = ( Base ` A ) |
||
| mdetuni.k | |- K = ( Base ` R ) |
||
| mdetuni.0g | |- .0. = ( 0g ` R ) |
||
| mdetuni.1r | |- .1. = ( 1r ` R ) |
||
| mdetuni.pg | |- .+ = ( +g ` R ) |
||
| mdetuni.tg | |- .x. = ( .r ` R ) |
||
| mdetuni.n | |- ( ph -> N e. Fin ) |
||
| mdetuni.r | |- ( ph -> R e. Ring ) |
||
| mdetuni.ff | |- ( ph -> D : B --> K ) |
||
| mdetuni.al | |- ( ph -> A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) |
||
| mdetuni.li | |- ( ph -> A. x e. B A. y e. B A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) |
||
| mdetuni.sc | |- ( ph -> A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) |
||
| Assertion | mdetunilem1 | |- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> ( D ` E ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetuni.a | |- A = ( N Mat R ) |
|
| 2 | mdetuni.b | |- B = ( Base ` A ) |
|
| 3 | mdetuni.k | |- K = ( Base ` R ) |
|
| 4 | mdetuni.0g | |- .0. = ( 0g ` R ) |
|
| 5 | mdetuni.1r | |- .1. = ( 1r ` R ) |
|
| 6 | mdetuni.pg | |- .+ = ( +g ` R ) |
|
| 7 | mdetuni.tg | |- .x. = ( .r ` R ) |
|
| 8 | mdetuni.n | |- ( ph -> N e. Fin ) |
|
| 9 | mdetuni.r | |- ( ph -> R e. Ring ) |
|
| 10 | mdetuni.ff | |- ( ph -> D : B --> K ) |
|
| 11 | mdetuni.al | |- ( ph -> A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) |
|
| 12 | mdetuni.li | |- ( ph -> A. x e. B A. y e. B A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) |
|
| 13 | mdetuni.sc | |- ( ph -> A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) |
|
| 14 | simpr3 | |- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> F =/= G ) |
|
| 15 | simpl3 | |- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> A. w e. N ( F E w ) = ( G E w ) ) |
|
| 16 | neeq2 | |- ( z = G -> ( F =/= z <-> F =/= G ) ) |
|
| 17 | oveq1 | |- ( z = G -> ( z E w ) = ( G E w ) ) |
|
| 18 | 17 | eqeq2d | |- ( z = G -> ( ( F E w ) = ( z E w ) <-> ( F E w ) = ( G E w ) ) ) |
| 19 | 18 | ralbidv | |- ( z = G -> ( A. w e. N ( F E w ) = ( z E w ) <-> A. w e. N ( F E w ) = ( G E w ) ) ) |
| 20 | 16 19 | anbi12d | |- ( z = G -> ( ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) <-> ( F =/= G /\ A. w e. N ( F E w ) = ( G E w ) ) ) ) |
| 21 | 20 | imbi1d | |- ( z = G -> ( ( ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) <-> ( ( F =/= G /\ A. w e. N ( F E w ) = ( G E w ) ) -> ( D ` E ) = .0. ) ) ) |
| 22 | simpl2 | |- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> E e. B ) |
|
| 23 | simpr1 | |- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> F e. N ) |
|
| 24 | simpl1 | |- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> ph ) |
|
| 25 | 24 11 | syl | |- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) |
| 26 | oveq | |- ( x = E -> ( y x w ) = ( y E w ) ) |
|
| 27 | oveq | |- ( x = E -> ( z x w ) = ( z E w ) ) |
|
| 28 | 26 27 | eqeq12d | |- ( x = E -> ( ( y x w ) = ( z x w ) <-> ( y E w ) = ( z E w ) ) ) |
| 29 | 28 | ralbidv | |- ( x = E -> ( A. w e. N ( y x w ) = ( z x w ) <-> A. w e. N ( y E w ) = ( z E w ) ) ) |
| 30 | 29 | anbi2d | |- ( x = E -> ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) <-> ( y =/= z /\ A. w e. N ( y E w ) = ( z E w ) ) ) ) |
| 31 | fveqeq2 | |- ( x = E -> ( ( D ` x ) = .0. <-> ( D ` E ) = .0. ) ) |
|
| 32 | 30 31 | imbi12d | |- ( x = E -> ( ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) <-> ( ( y =/= z /\ A. w e. N ( y E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) ) ) |
| 33 | 32 | ralbidv | |- ( x = E -> ( A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) <-> A. z e. N ( ( y =/= z /\ A. w e. N ( y E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) ) ) |
| 34 | neeq1 | |- ( y = F -> ( y =/= z <-> F =/= z ) ) |
|
| 35 | oveq1 | |- ( y = F -> ( y E w ) = ( F E w ) ) |
|
| 36 | 35 | eqeq1d | |- ( y = F -> ( ( y E w ) = ( z E w ) <-> ( F E w ) = ( z E w ) ) ) |
| 37 | 36 | ralbidv | |- ( y = F -> ( A. w e. N ( y E w ) = ( z E w ) <-> A. w e. N ( F E w ) = ( z E w ) ) ) |
| 38 | 34 37 | anbi12d | |- ( y = F -> ( ( y =/= z /\ A. w e. N ( y E w ) = ( z E w ) ) <-> ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) ) ) |
| 39 | 38 | imbi1d | |- ( y = F -> ( ( ( y =/= z /\ A. w e. N ( y E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) <-> ( ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) ) ) |
| 40 | 39 | ralbidv | |- ( y = F -> ( A. z e. N ( ( y =/= z /\ A. w e. N ( y E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) <-> A. z e. N ( ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) ) ) |
| 41 | 33 40 | rspc2va | |- ( ( ( E e. B /\ F e. N ) /\ A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) -> A. z e. N ( ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) ) |
| 42 | 22 23 25 41 | syl21anc | |- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> A. z e. N ( ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) ) |
| 43 | simpr2 | |- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> G e. N ) |
|
| 44 | 21 42 43 | rspcdva | |- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> ( ( F =/= G /\ A. w e. N ( F E w ) = ( G E w ) ) -> ( D ` E ) = .0. ) ) |
| 45 | 14 15 44 | mp2and | |- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> ( D ` E ) = .0. ) |