This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The determinant of a diagonal matrix with identical entries is the power of the entry in the diagonal. (Contributed by AV, 17-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetdiag.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| mdetdiag.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | ||
| mdetdiag.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| mdetdiag.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | ||
| mdetdiag.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mdetdiagid.c | ⊢ 𝐶 = ( Base ‘ 𝑅 ) | ||
| mdetdiagid.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| Assertion | mdetdiagid | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶 ) ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑋 , 0 ) → ( 𝐷 ‘ 𝑀 ) = ( ( ♯ ‘ 𝑁 ) · 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetdiag.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| 2 | mdetdiag.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 3 | mdetdiag.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 4 | mdetdiag.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | |
| 5 | mdetdiag.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 6 | mdetdiagid.c | ⊢ 𝐶 = ( Base ‘ 𝑅 ) | |
| 7 | mdetdiagid.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 8 | simpl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → 𝑅 ∈ CRing ) | |
| 9 | 8 | adantr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶 ) ) → 𝑅 ∈ CRing ) |
| 10 | simpr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → 𝑁 ∈ Fin ) | |
| 11 | 10 | adantr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶 ) ) → 𝑁 ∈ Fin ) |
| 12 | simpl | ⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶 ) → 𝑀 ∈ 𝐵 ) | |
| 13 | 12 | adantl | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶 ) ) → 𝑀 ∈ 𝐵 ) |
| 14 | 9 11 13 | 3jca | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶 ) ) → ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ) |
| 15 | 14 | adantr | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶 ) ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑋 , 0 ) ) → ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ) |
| 16 | id | ⊢ ( ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑋 , 0 ) → ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑋 , 0 ) ) | |
| 17 | ifnefalse | ⊢ ( 𝑖 ≠ 𝑗 → if ( 𝑖 = 𝑗 , 𝑋 , 0 ) = 0 ) | |
| 18 | 17 | adantl | ⊢ ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶 ) ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑖 ≠ 𝑗 ) → if ( 𝑖 = 𝑗 , 𝑋 , 0 ) = 0 ) |
| 19 | 16 18 | sylan9eqr | ⊢ ( ( ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶 ) ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑖 ≠ 𝑗 ) ∧ ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑋 , 0 ) ) → ( 𝑖 𝑀 𝑗 ) = 0 ) |
| 20 | 19 | exp31 | ⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶 ) ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 ≠ 𝑗 → ( ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑋 , 0 ) → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ) |
| 21 | 20 | com23 | ⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶 ) ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑋 , 0 ) → ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ) |
| 22 | 21 | ralimdva | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶 ) ) ∧ 𝑖 ∈ 𝑁 ) → ( ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑋 , 0 ) → ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ) |
| 23 | 22 | ralimdva | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶 ) ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑋 , 0 ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ) |
| 24 | 23 | imp | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶 ) ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑋 , 0 ) ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) |
| 25 | 1 2 3 4 5 | mdetdiag | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) → ( 𝐷 ‘ 𝑀 ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( 𝑘 𝑀 𝑘 ) ) ) ) ) |
| 26 | 15 24 25 | sylc | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶 ) ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑋 , 0 ) ) → ( 𝐷 ‘ 𝑀 ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( 𝑘 𝑀 𝑘 ) ) ) ) |
| 27 | oveq1 | ⊢ ( 𝑖 = 𝑘 → ( 𝑖 𝑀 𝑗 ) = ( 𝑘 𝑀 𝑗 ) ) | |
| 28 | equequ1 | ⊢ ( 𝑖 = 𝑘 → ( 𝑖 = 𝑗 ↔ 𝑘 = 𝑗 ) ) | |
| 29 | 28 | ifbid | ⊢ ( 𝑖 = 𝑘 → if ( 𝑖 = 𝑗 , 𝑋 , 0 ) = if ( 𝑘 = 𝑗 , 𝑋 , 0 ) ) |
| 30 | 27 29 | eqeq12d | ⊢ ( 𝑖 = 𝑘 → ( ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑋 , 0 ) ↔ ( 𝑘 𝑀 𝑗 ) = if ( 𝑘 = 𝑗 , 𝑋 , 0 ) ) ) |
| 31 | oveq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝑘 𝑀 𝑗 ) = ( 𝑘 𝑀 𝑘 ) ) | |
| 32 | equequ2 | ⊢ ( 𝑗 = 𝑘 → ( 𝑘 = 𝑗 ↔ 𝑘 = 𝑘 ) ) | |
| 33 | 32 | ifbid | ⊢ ( 𝑗 = 𝑘 → if ( 𝑘 = 𝑗 , 𝑋 , 0 ) = if ( 𝑘 = 𝑘 , 𝑋 , 0 ) ) |
| 34 | 31 33 | eqeq12d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝑘 𝑀 𝑗 ) = if ( 𝑘 = 𝑗 , 𝑋 , 0 ) ↔ ( 𝑘 𝑀 𝑘 ) = if ( 𝑘 = 𝑘 , 𝑋 , 0 ) ) ) |
| 35 | 30 34 | rspc2v | ⊢ ( ( 𝑘 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑋 , 0 ) → ( 𝑘 𝑀 𝑘 ) = if ( 𝑘 = 𝑘 , 𝑋 , 0 ) ) ) |
| 36 | 35 | anidms | ⊢ ( 𝑘 ∈ 𝑁 → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑋 , 0 ) → ( 𝑘 𝑀 𝑘 ) = if ( 𝑘 = 𝑘 , 𝑋 , 0 ) ) ) |
| 37 | 36 | adantl | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶 ) ) ∧ 𝑘 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑋 , 0 ) → ( 𝑘 𝑀 𝑘 ) = if ( 𝑘 = 𝑘 , 𝑋 , 0 ) ) ) |
| 38 | 37 | imp | ⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶 ) ) ∧ 𝑘 ∈ 𝑁 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑋 , 0 ) ) → ( 𝑘 𝑀 𝑘 ) = if ( 𝑘 = 𝑘 , 𝑋 , 0 ) ) |
| 39 | equid | ⊢ 𝑘 = 𝑘 | |
| 40 | 39 | iftruei | ⊢ if ( 𝑘 = 𝑘 , 𝑋 , 0 ) = 𝑋 |
| 41 | 38 40 | eqtrdi | ⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶 ) ) ∧ 𝑘 ∈ 𝑁 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑋 , 0 ) ) → ( 𝑘 𝑀 𝑘 ) = 𝑋 ) |
| 42 | 41 | an32s | ⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶 ) ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑋 , 0 ) ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑘 𝑀 𝑘 ) = 𝑋 ) |
| 43 | 42 | mpteq2dva | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶 ) ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑋 , 0 ) ) → ( 𝑘 ∈ 𝑁 ↦ ( 𝑘 𝑀 𝑘 ) ) = ( 𝑘 ∈ 𝑁 ↦ 𝑋 ) ) |
| 44 | 43 | oveq2d | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶 ) ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑋 , 0 ) ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( 𝑘 𝑀 𝑘 ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ 𝑋 ) ) ) |
| 45 | 4 | crngmgp | ⊢ ( 𝑅 ∈ CRing → 𝐺 ∈ CMnd ) |
| 46 | cmnmnd | ⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) | |
| 47 | 45 46 | syl | ⊢ ( 𝑅 ∈ CRing → 𝐺 ∈ Mnd ) |
| 48 | 47 | adantr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → 𝐺 ∈ Mnd ) |
| 49 | simpr | ⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ∈ 𝐶 ) | |
| 50 | 4 6 | mgpbas | ⊢ 𝐶 = ( Base ‘ 𝐺 ) |
| 51 | 50 7 | gsumconst | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ Fin ∧ 𝑋 ∈ 𝐶 ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ 𝑋 ) ) = ( ( ♯ ‘ 𝑁 ) · 𝑋 ) ) |
| 52 | 48 10 49 51 | syl2an3an | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶 ) ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ 𝑋 ) ) = ( ( ♯ ‘ 𝑁 ) · 𝑋 ) ) |
| 53 | 52 | adantr | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶 ) ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑋 , 0 ) ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ 𝑋 ) ) = ( ( ♯ ‘ 𝑁 ) · 𝑋 ) ) |
| 54 | 26 44 53 | 3eqtrd | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶 ) ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑋 , 0 ) ) → ( 𝐷 ‘ 𝑀 ) = ( ( ♯ ‘ 𝑁 ) · 𝑋 ) ) |
| 55 | 54 | ex | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝑋 ∈ 𝐶 ) ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) = if ( 𝑖 = 𝑗 , 𝑋 , 0 ) → ( 𝐷 ‘ 𝑀 ) = ( ( ♯ ‘ 𝑁 ) · 𝑋 ) ) ) |