This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The determinant of a diagonal matrix with identical entries is the power of the entry in the diagonal. (Contributed by AV, 17-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetdiag.d | |- D = ( N maDet R ) |
|
| mdetdiag.a | |- A = ( N Mat R ) |
||
| mdetdiag.b | |- B = ( Base ` A ) |
||
| mdetdiag.g | |- G = ( mulGrp ` R ) |
||
| mdetdiag.0 | |- .0. = ( 0g ` R ) |
||
| mdetdiagid.c | |- C = ( Base ` R ) |
||
| mdetdiagid.t | |- .x. = ( .g ` G ) |
||
| Assertion | mdetdiagid | |- ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ X e. C ) ) -> ( A. i e. N A. j e. N ( i M j ) = if ( i = j , X , .0. ) -> ( D ` M ) = ( ( # ` N ) .x. X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetdiag.d | |- D = ( N maDet R ) |
|
| 2 | mdetdiag.a | |- A = ( N Mat R ) |
|
| 3 | mdetdiag.b | |- B = ( Base ` A ) |
|
| 4 | mdetdiag.g | |- G = ( mulGrp ` R ) |
|
| 5 | mdetdiag.0 | |- .0. = ( 0g ` R ) |
|
| 6 | mdetdiagid.c | |- C = ( Base ` R ) |
|
| 7 | mdetdiagid.t | |- .x. = ( .g ` G ) |
|
| 8 | simpl | |- ( ( R e. CRing /\ N e. Fin ) -> R e. CRing ) |
|
| 9 | 8 | adantr | |- ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ X e. C ) ) -> R e. CRing ) |
| 10 | simpr | |- ( ( R e. CRing /\ N e. Fin ) -> N e. Fin ) |
|
| 11 | 10 | adantr | |- ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ X e. C ) ) -> N e. Fin ) |
| 12 | simpl | |- ( ( M e. B /\ X e. C ) -> M e. B ) |
|
| 13 | 12 | adantl | |- ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ X e. C ) ) -> M e. B ) |
| 14 | 9 11 13 | 3jca | |- ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ X e. C ) ) -> ( R e. CRing /\ N e. Fin /\ M e. B ) ) |
| 15 | 14 | adantr | |- ( ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ X e. C ) ) /\ A. i e. N A. j e. N ( i M j ) = if ( i = j , X , .0. ) ) -> ( R e. CRing /\ N e. Fin /\ M e. B ) ) |
| 16 | id | |- ( ( i M j ) = if ( i = j , X , .0. ) -> ( i M j ) = if ( i = j , X , .0. ) ) |
|
| 17 | ifnefalse | |- ( i =/= j -> if ( i = j , X , .0. ) = .0. ) |
|
| 18 | 17 | adantl | |- ( ( ( ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ X e. C ) ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) -> if ( i = j , X , .0. ) = .0. ) |
| 19 | 16 18 | sylan9eqr | |- ( ( ( ( ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ X e. C ) ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = if ( i = j , X , .0. ) ) -> ( i M j ) = .0. ) |
| 20 | 19 | exp31 | |- ( ( ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ X e. C ) ) /\ i e. N ) /\ j e. N ) -> ( i =/= j -> ( ( i M j ) = if ( i = j , X , .0. ) -> ( i M j ) = .0. ) ) ) |
| 21 | 20 | com23 | |- ( ( ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ X e. C ) ) /\ i e. N ) /\ j e. N ) -> ( ( i M j ) = if ( i = j , X , .0. ) -> ( i =/= j -> ( i M j ) = .0. ) ) ) |
| 22 | 21 | ralimdva | |- ( ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ X e. C ) ) /\ i e. N ) -> ( A. j e. N ( i M j ) = if ( i = j , X , .0. ) -> A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) ) |
| 23 | 22 | ralimdva | |- ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ X e. C ) ) -> ( A. i e. N A. j e. N ( i M j ) = if ( i = j , X , .0. ) -> A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) ) |
| 24 | 23 | imp | |- ( ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ X e. C ) ) /\ A. i e. N A. j e. N ( i M j ) = if ( i = j , X , .0. ) ) -> A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) |
| 25 | 1 2 3 4 5 | mdetdiag | |- ( ( R e. CRing /\ N e. Fin /\ M e. B ) -> ( A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) -> ( D ` M ) = ( G gsum ( k e. N |-> ( k M k ) ) ) ) ) |
| 26 | 15 24 25 | sylc | |- ( ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ X e. C ) ) /\ A. i e. N A. j e. N ( i M j ) = if ( i = j , X , .0. ) ) -> ( D ` M ) = ( G gsum ( k e. N |-> ( k M k ) ) ) ) |
| 27 | oveq1 | |- ( i = k -> ( i M j ) = ( k M j ) ) |
|
| 28 | equequ1 | |- ( i = k -> ( i = j <-> k = j ) ) |
|
| 29 | 28 | ifbid | |- ( i = k -> if ( i = j , X , .0. ) = if ( k = j , X , .0. ) ) |
| 30 | 27 29 | eqeq12d | |- ( i = k -> ( ( i M j ) = if ( i = j , X , .0. ) <-> ( k M j ) = if ( k = j , X , .0. ) ) ) |
| 31 | oveq2 | |- ( j = k -> ( k M j ) = ( k M k ) ) |
|
| 32 | equequ2 | |- ( j = k -> ( k = j <-> k = k ) ) |
|
| 33 | 32 | ifbid | |- ( j = k -> if ( k = j , X , .0. ) = if ( k = k , X , .0. ) ) |
| 34 | 31 33 | eqeq12d | |- ( j = k -> ( ( k M j ) = if ( k = j , X , .0. ) <-> ( k M k ) = if ( k = k , X , .0. ) ) ) |
| 35 | 30 34 | rspc2v | |- ( ( k e. N /\ k e. N ) -> ( A. i e. N A. j e. N ( i M j ) = if ( i = j , X , .0. ) -> ( k M k ) = if ( k = k , X , .0. ) ) ) |
| 36 | 35 | anidms | |- ( k e. N -> ( A. i e. N A. j e. N ( i M j ) = if ( i = j , X , .0. ) -> ( k M k ) = if ( k = k , X , .0. ) ) ) |
| 37 | 36 | adantl | |- ( ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ X e. C ) ) /\ k e. N ) -> ( A. i e. N A. j e. N ( i M j ) = if ( i = j , X , .0. ) -> ( k M k ) = if ( k = k , X , .0. ) ) ) |
| 38 | 37 | imp | |- ( ( ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ X e. C ) ) /\ k e. N ) /\ A. i e. N A. j e. N ( i M j ) = if ( i = j , X , .0. ) ) -> ( k M k ) = if ( k = k , X , .0. ) ) |
| 39 | equid | |- k = k |
|
| 40 | 39 | iftruei | |- if ( k = k , X , .0. ) = X |
| 41 | 38 40 | eqtrdi | |- ( ( ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ X e. C ) ) /\ k e. N ) /\ A. i e. N A. j e. N ( i M j ) = if ( i = j , X , .0. ) ) -> ( k M k ) = X ) |
| 42 | 41 | an32s | |- ( ( ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ X e. C ) ) /\ A. i e. N A. j e. N ( i M j ) = if ( i = j , X , .0. ) ) /\ k e. N ) -> ( k M k ) = X ) |
| 43 | 42 | mpteq2dva | |- ( ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ X e. C ) ) /\ A. i e. N A. j e. N ( i M j ) = if ( i = j , X , .0. ) ) -> ( k e. N |-> ( k M k ) ) = ( k e. N |-> X ) ) |
| 44 | 43 | oveq2d | |- ( ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ X e. C ) ) /\ A. i e. N A. j e. N ( i M j ) = if ( i = j , X , .0. ) ) -> ( G gsum ( k e. N |-> ( k M k ) ) ) = ( G gsum ( k e. N |-> X ) ) ) |
| 45 | 4 | crngmgp | |- ( R e. CRing -> G e. CMnd ) |
| 46 | cmnmnd | |- ( G e. CMnd -> G e. Mnd ) |
|
| 47 | 45 46 | syl | |- ( R e. CRing -> G e. Mnd ) |
| 48 | 47 | adantr | |- ( ( R e. CRing /\ N e. Fin ) -> G e. Mnd ) |
| 49 | simpr | |- ( ( M e. B /\ X e. C ) -> X e. C ) |
|
| 50 | 4 6 | mgpbas | |- C = ( Base ` G ) |
| 51 | 50 7 | gsumconst | |- ( ( G e. Mnd /\ N e. Fin /\ X e. C ) -> ( G gsum ( k e. N |-> X ) ) = ( ( # ` N ) .x. X ) ) |
| 52 | 48 10 49 51 | syl2an3an | |- ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ X e. C ) ) -> ( G gsum ( k e. N |-> X ) ) = ( ( # ` N ) .x. X ) ) |
| 53 | 52 | adantr | |- ( ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ X e. C ) ) /\ A. i e. N A. j e. N ( i M j ) = if ( i = j , X , .0. ) ) -> ( G gsum ( k e. N |-> X ) ) = ( ( # ` N ) .x. X ) ) |
| 54 | 26 44 53 | 3eqtrd | |- ( ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ X e. C ) ) /\ A. i e. N A. j e. N ( i M j ) = if ( i = j , X , .0. ) ) -> ( D ` M ) = ( ( # ` N ) .x. X ) ) |
| 55 | 54 | ex | |- ( ( ( R e. CRing /\ N e. Fin ) /\ ( M e. B /\ X e. C ) ) -> ( A. i e. N A. j e. N ( i M j ) = if ( i = j , X , .0. ) -> ( D ` M ) = ( ( # ` N ) .x. X ) ) ) |