This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponentiation (by a nonnegative integer) of the multiplicative identity of a semiring, analogous to mulgnn0z . (Contributed by AV, 25-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srg1expzeq1.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | |
| srg1expzeq1.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| srg1expzeq1.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | srg1expzeq1 | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 · 1 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srg1expzeq1.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | |
| 2 | srg1expzeq1.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | srg1expzeq1.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | 1 | srgmgp | ⊢ ( 𝑅 ∈ SRing → 𝐺 ∈ Mnd ) |
| 5 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 6 | 1 3 | ringidval | ⊢ 1 = ( 0g ‘ 𝐺 ) |
| 7 | 5 2 6 | mulgnn0z | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 · 1 ) = 1 ) |
| 8 | 4 7 | sylan | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 · 1 ) = 1 ) |