This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The determinant of the zero matrix (of dimension greater 0!) is 0. (Contributed by AV, 17-Aug-2019) (Revised by AV, 3-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdet0.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| mdet0.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | ||
| mdet0.z | ⊢ 𝑍 = ( 0g ‘ 𝐴 ) | ||
| mdet0.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | mdet0 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ) → ( 𝐷 ‘ 𝑍 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdet0.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| 2 | mdet0.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 3 | mdet0.z | ⊢ 𝑍 = ( 0g ‘ 𝐴 ) | |
| 4 | mdet0.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | n0 | ⊢ ( 𝑁 ≠ ∅ ↔ ∃ 𝑖 𝑖 ∈ 𝑁 ) | |
| 6 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 7 | 6 | anim1ci | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 8 | 7 | adantr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 9 | 2 4 | mat0op | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ 𝐴 ) = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 0 ) ) |
| 10 | 3 9 | eqtrid | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑍 = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 0 ) ) |
| 11 | 8 10 | syl | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → 𝑍 = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 0 ) ) |
| 12 | 11 | fveq2d | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → ( 𝐷 ‘ 𝑍 ) = ( 𝐷 ‘ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 0 ) ) ) |
| 13 | ifid | ⊢ if ( 𝑥 = 𝑖 , 0 , 0 ) = 0 | |
| 14 | 13 | eqcomi | ⊢ 0 = if ( 𝑥 = 𝑖 , 0 , 0 ) |
| 15 | 14 | a1i | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → 0 = if ( 𝑥 = 𝑖 , 0 , 0 ) ) |
| 16 | 15 | mpoeq3dv | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 0 ) = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ if ( 𝑥 = 𝑖 , 0 , 0 ) ) ) |
| 17 | 16 | fveq2d | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → ( 𝐷 ‘ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 0 ) ) = ( 𝐷 ‘ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ if ( 𝑥 = 𝑖 , 0 , 0 ) ) ) ) |
| 18 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 19 | simpll | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → 𝑅 ∈ CRing ) | |
| 20 | simpr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → 𝑁 ∈ Fin ) | |
| 21 | 20 | adantr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → 𝑁 ∈ Fin ) |
| 22 | ringmnd | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) | |
| 23 | 6 22 | syl | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Mnd ) |
| 24 | 23 | adantr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → 𝑅 ∈ Mnd ) |
| 25 | 18 4 | mndidcl | ⊢ ( 𝑅 ∈ Mnd → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 26 | 24 25 | syl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 27 | 26 | adantr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 28 | 27 | 3ad2ant1 | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 29 | simpr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → 𝑖 ∈ 𝑁 ) | |
| 30 | 1 18 4 19 21 28 29 | mdetr0 | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → ( 𝐷 ‘ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ if ( 𝑥 = 𝑖 , 0 , 0 ) ) ) = 0 ) |
| 31 | 12 17 30 | 3eqtrd | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → ( 𝐷 ‘ 𝑍 ) = 0 ) |
| 32 | 31 | ex | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( 𝑖 ∈ 𝑁 → ( 𝐷 ‘ 𝑍 ) = 0 ) ) |
| 33 | 32 | exlimdv | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( ∃ 𝑖 𝑖 ∈ 𝑁 → ( 𝐷 ‘ 𝑍 ) = 0 ) ) |
| 34 | 5 33 | biimtrid | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( 𝑁 ≠ ∅ → ( 𝐷 ‘ 𝑍 ) = 0 ) ) |
| 35 | 34 | 3impia | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ) → ( 𝐷 ‘ 𝑍 ) = 0 ) |