This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a zero matrix as operation. (Contributed by AV, 2-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mat0op.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| mat0op.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | mat0op | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ 𝐴 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat0op.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | mat0op.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) = ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) | |
| 4 | 1 3 | mat0 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( 0g ‘ 𝐴 ) ) |
| 5 | fconstmpo | ⊢ ( ( 𝑁 × 𝑁 ) × { ( 0g ‘ 𝑅 ) } ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) | |
| 6 | simpr | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑅 ∈ Ring ) | |
| 7 | sqxpexg | ⊢ ( 𝑁 ∈ Fin → ( 𝑁 × 𝑁 ) ∈ V ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑁 × 𝑁 ) ∈ V ) |
| 9 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 10 | 3 9 | frlm0 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 × 𝑁 ) ∈ V ) → ( ( 𝑁 × 𝑁 ) × { ( 0g ‘ 𝑅 ) } ) = ( 0g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) ) |
| 11 | 6 8 10 | syl2anc | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( 𝑁 × 𝑁 ) × { ( 0g ‘ 𝑅 ) } ) = ( 0g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) ) |
| 12 | 2 | eqcomi | ⊢ ( 0g ‘ 𝑅 ) = 0 |
| 13 | 12 | a1i | ⊢ ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 0g ‘ 𝑅 ) = 0 ) |
| 14 | 13 | mpoeq3ia | ⊢ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 0 ) |
| 15 | 14 | a1i | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 0 ) ) |
| 16 | 5 11 15 | 3eqtr3a | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 0 ) ) |
| 17 | 4 16 | eqtr3d | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ 𝐴 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 0 ) ) |