This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The determinant of the zero matrix (of dimension greater 0!) is 0. (Contributed by AV, 17-Aug-2019) (Revised by AV, 3-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdet0.d | |- D = ( N maDet R ) |
|
| mdet0.a | |- A = ( N Mat R ) |
||
| mdet0.z | |- Z = ( 0g ` A ) |
||
| mdet0.0 | |- .0. = ( 0g ` R ) |
||
| Assertion | mdet0 | |- ( ( R e. CRing /\ N e. Fin /\ N =/= (/) ) -> ( D ` Z ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdet0.d | |- D = ( N maDet R ) |
|
| 2 | mdet0.a | |- A = ( N Mat R ) |
|
| 3 | mdet0.z | |- Z = ( 0g ` A ) |
|
| 4 | mdet0.0 | |- .0. = ( 0g ` R ) |
|
| 5 | n0 | |- ( N =/= (/) <-> E. i i e. N ) |
|
| 6 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 7 | 6 | anim1ci | |- ( ( R e. CRing /\ N e. Fin ) -> ( N e. Fin /\ R e. Ring ) ) |
| 8 | 7 | adantr | |- ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> ( N e. Fin /\ R e. Ring ) ) |
| 9 | 2 4 | mat0op | |- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` A ) = ( x e. N , y e. N |-> .0. ) ) |
| 10 | 3 9 | eqtrid | |- ( ( N e. Fin /\ R e. Ring ) -> Z = ( x e. N , y e. N |-> .0. ) ) |
| 11 | 8 10 | syl | |- ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> Z = ( x e. N , y e. N |-> .0. ) ) |
| 12 | 11 | fveq2d | |- ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> ( D ` Z ) = ( D ` ( x e. N , y e. N |-> .0. ) ) ) |
| 13 | ifid | |- if ( x = i , .0. , .0. ) = .0. |
|
| 14 | 13 | eqcomi | |- .0. = if ( x = i , .0. , .0. ) |
| 15 | 14 | a1i | |- ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> .0. = if ( x = i , .0. , .0. ) ) |
| 16 | 15 | mpoeq3dv | |- ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> ( x e. N , y e. N |-> .0. ) = ( x e. N , y e. N |-> if ( x = i , .0. , .0. ) ) ) |
| 17 | 16 | fveq2d | |- ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> ( D ` ( x e. N , y e. N |-> .0. ) ) = ( D ` ( x e. N , y e. N |-> if ( x = i , .0. , .0. ) ) ) ) |
| 18 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 19 | simpll | |- ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> R e. CRing ) |
|
| 20 | simpr | |- ( ( R e. CRing /\ N e. Fin ) -> N e. Fin ) |
|
| 21 | 20 | adantr | |- ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> N e. Fin ) |
| 22 | ringmnd | |- ( R e. Ring -> R e. Mnd ) |
|
| 23 | 6 22 | syl | |- ( R e. CRing -> R e. Mnd ) |
| 24 | 23 | adantr | |- ( ( R e. CRing /\ N e. Fin ) -> R e. Mnd ) |
| 25 | 18 4 | mndidcl | |- ( R e. Mnd -> .0. e. ( Base ` R ) ) |
| 26 | 24 25 | syl | |- ( ( R e. CRing /\ N e. Fin ) -> .0. e. ( Base ` R ) ) |
| 27 | 26 | adantr | |- ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> .0. e. ( Base ` R ) ) |
| 28 | 27 | 3ad2ant1 | |- ( ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) /\ x e. N /\ y e. N ) -> .0. e. ( Base ` R ) ) |
| 29 | simpr | |- ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> i e. N ) |
|
| 30 | 1 18 4 19 21 28 29 | mdetr0 | |- ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> ( D ` ( x e. N , y e. N |-> if ( x = i , .0. , .0. ) ) ) = .0. ) |
| 31 | 12 17 30 | 3eqtrd | |- ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> ( D ` Z ) = .0. ) |
| 32 | 31 | ex | |- ( ( R e. CRing /\ N e. Fin ) -> ( i e. N -> ( D ` Z ) = .0. ) ) |
| 33 | 32 | exlimdv | |- ( ( R e. CRing /\ N e. Fin ) -> ( E. i i e. N -> ( D ` Z ) = .0. ) ) |
| 34 | 5 33 | biimtrid | |- ( ( R e. CRing /\ N e. Fin ) -> ( N =/= (/) -> ( D ` Z ) = .0. ) ) |
| 35 | 34 | 3impia | |- ( ( R e. CRing /\ N e. Fin /\ N =/= (/) ) -> ( D ` Z ) = .0. ) |