This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sharp closure for multivariate polynomials. (Contributed by Stefan O'Rear, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdegcl.d | ⊢ 𝐷 = ( 𝐼 mDeg 𝑅 ) | |
| mdegcl.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | ||
| mdegcl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| Assertion | mdegcl | ⊢ ( 𝐹 ∈ 𝐵 → ( 𝐷 ‘ 𝐹 ) ∈ ( ℕ0 ∪ { -∞ } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdegcl.d | ⊢ 𝐷 = ( 𝐼 mDeg 𝑅 ) | |
| 2 | mdegcl.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 3 | mdegcl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 4 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 5 | eqid | ⊢ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } = { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } | |
| 6 | eqid | ⊢ ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) = ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) | |
| 7 | 1 2 3 4 5 6 | mdegval | ⊢ ( 𝐹 ∈ 𝐵 → ( 𝐷 ‘ 𝐹 ) = sup ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) ) |
| 8 | supeq1 | ⊢ ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) = ∅ → sup ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) = sup ( ∅ , ℝ* , < ) ) | |
| 9 | 8 | eleq1d | ⊢ ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) = ∅ → ( sup ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) ∈ ( ℕ0 ∪ { -∞ } ) ↔ sup ( ∅ , ℝ* , < ) ∈ ( ℕ0 ∪ { -∞ } ) ) ) |
| 10 | imassrn | ⊢ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ⊆ ran ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) | |
| 11 | 5 6 | tdeglem1 | ⊢ ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) : { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ⟶ ℕ0 |
| 12 | frn | ⊢ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) : { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ⟶ ℕ0 → ran ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ⊆ ℕ0 ) | |
| 13 | 11 12 | mp1i | ⊢ ( 𝐹 ∈ 𝐵 → ran ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ⊆ ℕ0 ) |
| 14 | 10 13 | sstrid | ⊢ ( 𝐹 ∈ 𝐵 → ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ⊆ ℕ0 ) |
| 15 | 14 | adantr | ⊢ ( ( 𝐹 ∈ 𝐵 ∧ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ≠ ∅ ) → ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ⊆ ℕ0 ) |
| 16 | ssun1 | ⊢ ℕ0 ⊆ ( ℕ0 ∪ { -∞ } ) | |
| 17 | 15 16 | sstrdi | ⊢ ( ( 𝐹 ∈ 𝐵 ∧ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ≠ ∅ ) → ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ⊆ ( ℕ0 ∪ { -∞ } ) ) |
| 18 | ffun | ⊢ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) : { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ⟶ ℕ0 → Fun ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ) | |
| 19 | 11 18 | mp1i | ⊢ ( 𝐹 ∈ 𝐵 → Fun ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ) |
| 20 | id | ⊢ ( 𝐹 ∈ 𝐵 → 𝐹 ∈ 𝐵 ) | |
| 21 | 2 3 4 20 | mplelsfi | ⊢ ( 𝐹 ∈ 𝐵 → 𝐹 finSupp ( 0g ‘ 𝑅 ) ) |
| 22 | 21 | fsuppimpd | ⊢ ( 𝐹 ∈ 𝐵 → ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ∈ Fin ) |
| 23 | imafi | ⊢ ( ( Fun ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) ∧ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ∈ Fin ) → ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ∈ Fin ) | |
| 24 | 19 22 23 | syl2anc | ⊢ ( 𝐹 ∈ 𝐵 → ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ∈ Fin ) |
| 25 | 24 | adantr | ⊢ ( ( 𝐹 ∈ 𝐵 ∧ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ≠ ∅ ) → ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ∈ Fin ) |
| 26 | simpr | ⊢ ( ( 𝐹 ∈ 𝐵 ∧ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ≠ ∅ ) → ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ≠ ∅ ) | |
| 27 | nn0ssre | ⊢ ℕ0 ⊆ ℝ | |
| 28 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 29 | 27 28 | sstri | ⊢ ℕ0 ⊆ ℝ* |
| 30 | 15 29 | sstrdi | ⊢ ( ( 𝐹 ∈ 𝐵 ∧ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ≠ ∅ ) → ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ⊆ ℝ* ) |
| 31 | xrltso | ⊢ < Or ℝ* | |
| 32 | fisupcl | ⊢ ( ( < Or ℝ* ∧ ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ∈ Fin ∧ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ≠ ∅ ∧ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ⊆ ℝ* ) ) → sup ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) ∈ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ) | |
| 33 | 31 32 | mpan | ⊢ ( ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ∈ Fin ∧ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ≠ ∅ ∧ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ⊆ ℝ* ) → sup ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) ∈ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ) |
| 34 | 25 26 30 33 | syl3anc | ⊢ ( ( 𝐹 ∈ 𝐵 ∧ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ≠ ∅ ) → sup ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) ∈ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ) |
| 35 | 17 34 | sseldd | ⊢ ( ( 𝐹 ∈ 𝐵 ∧ ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) ≠ ∅ ) → sup ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) ∈ ( ℕ0 ∪ { -∞ } ) ) |
| 36 | xrsup0 | ⊢ sup ( ∅ , ℝ* , < ) = -∞ | |
| 37 | ssun2 | ⊢ { -∞ } ⊆ ( ℕ0 ∪ { -∞ } ) | |
| 38 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 39 | 38 | elexi | ⊢ -∞ ∈ V |
| 40 | 39 | snid | ⊢ -∞ ∈ { -∞ } |
| 41 | 37 40 | sselii | ⊢ -∞ ∈ ( ℕ0 ∪ { -∞ } ) |
| 42 | 36 41 | eqeltri | ⊢ sup ( ∅ , ℝ* , < ) ∈ ( ℕ0 ∪ { -∞ } ) |
| 43 | 42 | a1i | ⊢ ( 𝐹 ∈ 𝐵 → sup ( ∅ , ℝ* , < ) ∈ ( ℕ0 ∪ { -∞ } ) ) |
| 44 | 9 35 43 | pm2.61ne | ⊢ ( 𝐹 ∈ 𝐵 → sup ( ( ( 𝑏 ∈ { 𝑎 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑏 ) ) “ ( 𝐹 supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) ∈ ( ℕ0 ∪ { -∞ } ) ) |
| 45 | 7 44 | eqeltrd | ⊢ ( 𝐹 ∈ 𝐵 → ( 𝐷 ‘ 𝐹 ) ∈ ( ℕ0 ∪ { -∞ } ) ) |