This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sharp closure for multivariate polynomials. (Contributed by Stefan O'Rear, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdegcl.d | |- D = ( I mDeg R ) |
|
| mdegcl.p | |- P = ( I mPoly R ) |
||
| mdegcl.b | |- B = ( Base ` P ) |
||
| Assertion | mdegcl | |- ( F e. B -> ( D ` F ) e. ( NN0 u. { -oo } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdegcl.d | |- D = ( I mDeg R ) |
|
| 2 | mdegcl.p | |- P = ( I mPoly R ) |
|
| 3 | mdegcl.b | |- B = ( Base ` P ) |
|
| 4 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 5 | eqid | |- { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } = { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |
|
| 6 | eqid | |- ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) = ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) |
|
| 7 | 1 2 3 4 5 6 | mdegval | |- ( F e. B -> ( D ` F ) = sup ( ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) , RR* , < ) ) |
| 8 | supeq1 | |- ( ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) = (/) -> sup ( ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) , RR* , < ) = sup ( (/) , RR* , < ) ) |
|
| 9 | 8 | eleq1d | |- ( ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) = (/) -> ( sup ( ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) , RR* , < ) e. ( NN0 u. { -oo } ) <-> sup ( (/) , RR* , < ) e. ( NN0 u. { -oo } ) ) ) |
| 10 | imassrn | |- ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) C_ ran ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) |
|
| 11 | 5 6 | tdeglem1 | |- ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) : { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } --> NN0 |
| 12 | frn | |- ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) : { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } --> NN0 -> ran ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) C_ NN0 ) |
|
| 13 | 11 12 | mp1i | |- ( F e. B -> ran ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) C_ NN0 ) |
| 14 | 10 13 | sstrid | |- ( F e. B -> ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) C_ NN0 ) |
| 15 | 14 | adantr | |- ( ( F e. B /\ ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) =/= (/) ) -> ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) C_ NN0 ) |
| 16 | ssun1 | |- NN0 C_ ( NN0 u. { -oo } ) |
|
| 17 | 15 16 | sstrdi | |- ( ( F e. B /\ ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) =/= (/) ) -> ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) C_ ( NN0 u. { -oo } ) ) |
| 18 | ffun | |- ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) : { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } --> NN0 -> Fun ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) ) |
|
| 19 | 11 18 | mp1i | |- ( F e. B -> Fun ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) ) |
| 20 | id | |- ( F e. B -> F e. B ) |
|
| 21 | 2 3 4 20 | mplelsfi | |- ( F e. B -> F finSupp ( 0g ` R ) ) |
| 22 | 21 | fsuppimpd | |- ( F e. B -> ( F supp ( 0g ` R ) ) e. Fin ) |
| 23 | imafi | |- ( ( Fun ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) /\ ( F supp ( 0g ` R ) ) e. Fin ) -> ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) e. Fin ) |
|
| 24 | 19 22 23 | syl2anc | |- ( F e. B -> ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) e. Fin ) |
| 25 | 24 | adantr | |- ( ( F e. B /\ ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) =/= (/) ) -> ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) e. Fin ) |
| 26 | simpr | |- ( ( F e. B /\ ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) =/= (/) ) -> ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) =/= (/) ) |
|
| 27 | nn0ssre | |- NN0 C_ RR |
|
| 28 | ressxr | |- RR C_ RR* |
|
| 29 | 27 28 | sstri | |- NN0 C_ RR* |
| 30 | 15 29 | sstrdi | |- ( ( F e. B /\ ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) =/= (/) ) -> ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) C_ RR* ) |
| 31 | xrltso | |- < Or RR* |
|
| 32 | fisupcl | |- ( ( < Or RR* /\ ( ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) e. Fin /\ ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) =/= (/) /\ ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) C_ RR* ) ) -> sup ( ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) , RR* , < ) e. ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) ) |
|
| 33 | 31 32 | mpan | |- ( ( ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) e. Fin /\ ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) =/= (/) /\ ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) C_ RR* ) -> sup ( ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) , RR* , < ) e. ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) ) |
| 34 | 25 26 30 33 | syl3anc | |- ( ( F e. B /\ ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) =/= (/) ) -> sup ( ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) , RR* , < ) e. ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) ) |
| 35 | 17 34 | sseldd | |- ( ( F e. B /\ ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) =/= (/) ) -> sup ( ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) , RR* , < ) e. ( NN0 u. { -oo } ) ) |
| 36 | xrsup0 | |- sup ( (/) , RR* , < ) = -oo |
|
| 37 | ssun2 | |- { -oo } C_ ( NN0 u. { -oo } ) |
|
| 38 | mnfxr | |- -oo e. RR* |
|
| 39 | 38 | elexi | |- -oo e. _V |
| 40 | 39 | snid | |- -oo e. { -oo } |
| 41 | 37 40 | sselii | |- -oo e. ( NN0 u. { -oo } ) |
| 42 | 36 41 | eqeltri | |- sup ( (/) , RR* , < ) e. ( NN0 u. { -oo } ) |
| 43 | 42 | a1i | |- ( F e. B -> sup ( (/) , RR* , < ) e. ( NN0 u. { -oo } ) ) |
| 44 | 9 35 43 | pm2.61ne | |- ( F e. B -> sup ( ( ( b e. { a e. ( NN0 ^m I ) | ( `' a " NN ) e. Fin } |-> ( CCfld gsum b ) ) " ( F supp ( 0g ` R ) ) ) , RR* , < ) e. ( NN0 u. { -oo } ) ) |
| 45 | 7 44 | eqeltrd | |- ( F e. B -> ( D ` F ) e. ( NN0 u. { -oo } ) ) |