This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Degree of the zero polynomial. (Contributed by Stefan O'Rear, 20-Mar-2015) (Proof shortened by AV, 27-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdeg0.d | ⊢ 𝐷 = ( 𝐼 mDeg 𝑅 ) | |
| mdeg0.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | ||
| mdeg0.z | ⊢ 0 = ( 0g ‘ 𝑃 ) | ||
| Assertion | mdeg0 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( 𝐷 ‘ 0 ) = -∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdeg0.d | ⊢ 𝐷 = ( 𝐼 mDeg 𝑅 ) | |
| 2 | mdeg0.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 3 | mdeg0.z | ⊢ 0 = ( 0g ‘ 𝑃 ) | |
| 4 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 5 | 2 | mplgrp | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp ) → 𝑃 ∈ Grp ) |
| 6 | 4 5 | sylan2 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝑃 ∈ Grp ) |
| 7 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 8 | 7 3 | grpidcl | ⊢ ( 𝑃 ∈ Grp → 0 ∈ ( Base ‘ 𝑃 ) ) |
| 9 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 10 | eqid | ⊢ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } = { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } | |
| 11 | eqid | ⊢ ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) = ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) | |
| 12 | 1 2 7 9 10 11 | mdegval | ⊢ ( 0 ∈ ( Base ‘ 𝑃 ) → ( 𝐷 ‘ 0 ) = sup ( ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( 0 supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) ) |
| 13 | 6 8 12 | 3syl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( 𝐷 ‘ 0 ) = sup ( ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( 0 supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) ) |
| 14 | simpl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝐼 ∈ 𝑉 ) | |
| 15 | 4 | adantl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝑅 ∈ Grp ) |
| 16 | 2 10 9 3 14 15 | mpl0 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 0 = ( { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑅 ) } ) ) |
| 17 | fvex | ⊢ ( 0g ‘ 𝑅 ) ∈ V | |
| 18 | fnconstg | ⊢ ( ( 0g ‘ 𝑅 ) ∈ V → ( { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑅 ) } ) Fn { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ) | |
| 19 | 17 18 | mp1i | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑅 ) } ) Fn { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ) |
| 20 | 16 | fneq1d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( 0 Fn { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↔ ( { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑅 ) } ) Fn { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ) ) |
| 21 | 19 20 | mpbird | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 0 Fn { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ) |
| 22 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 23 | 22 | rabex | ⊢ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ∈ V |
| 24 | 23 | a1i | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ∈ V ) |
| 25 | 17 | a1i | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( 0g ‘ 𝑅 ) ∈ V ) |
| 26 | fnsuppeq0 | ⊢ ( ( 0 Fn { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ∧ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ∈ V ∧ ( 0g ‘ 𝑅 ) ∈ V ) → ( ( 0 supp ( 0g ‘ 𝑅 ) ) = ∅ ↔ 0 = ( { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑅 ) } ) ) ) | |
| 27 | 21 24 25 26 | syl3anc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( ( 0 supp ( 0g ‘ 𝑅 ) ) = ∅ ↔ 0 = ( { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } × { ( 0g ‘ 𝑅 ) } ) ) ) |
| 28 | 16 27 | mpbird | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( 0 supp ( 0g ‘ 𝑅 ) ) = ∅ ) |
| 29 | 28 | imaeq2d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( 0 supp ( 0g ‘ 𝑅 ) ) ) = ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ∅ ) ) |
| 30 | ima0 | ⊢ ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ∅ ) = ∅ | |
| 31 | 29 30 | eqtrdi | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( 0 supp ( 0g ‘ 𝑅 ) ) ) = ∅ ) |
| 32 | 31 | supeq1d | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → sup ( ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( 0 supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) = sup ( ∅ , ℝ* , < ) ) |
| 33 | xrsup0 | ⊢ sup ( ∅ , ℝ* , < ) = -∞ | |
| 34 | 32 33 | eqtrdi | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → sup ( ( ( 𝑦 ∈ { 𝑥 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑥 “ ℕ ) ∈ Fin } ↦ ( ℂfld Σg 𝑦 ) ) “ ( 0 supp ( 0g ‘ 𝑅 ) ) ) , ℝ* , < ) = -∞ ) |
| 35 | 13 34 | eqtrd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( 𝐷 ‘ 0 ) = -∞ ) |