This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Degree of the zero polynomial. (Contributed by Stefan O'Rear, 20-Mar-2015) (Proof shortened by AV, 27-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdeg0.d | |- D = ( I mDeg R ) |
|
| mdeg0.p | |- P = ( I mPoly R ) |
||
| mdeg0.z | |- .0. = ( 0g ` P ) |
||
| Assertion | mdeg0 | |- ( ( I e. V /\ R e. Ring ) -> ( D ` .0. ) = -oo ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdeg0.d | |- D = ( I mDeg R ) |
|
| 2 | mdeg0.p | |- P = ( I mPoly R ) |
|
| 3 | mdeg0.z | |- .0. = ( 0g ` P ) |
|
| 4 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 5 | 2 | mplgrp | |- ( ( I e. V /\ R e. Grp ) -> P e. Grp ) |
| 6 | 4 5 | sylan2 | |- ( ( I e. V /\ R e. Ring ) -> P e. Grp ) |
| 7 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 8 | 7 3 | grpidcl | |- ( P e. Grp -> .0. e. ( Base ` P ) ) |
| 9 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 10 | eqid | |- { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } = { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |
|
| 11 | eqid | |- ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) = ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) |
|
| 12 | 1 2 7 9 10 11 | mdegval | |- ( .0. e. ( Base ` P ) -> ( D ` .0. ) = sup ( ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( .0. supp ( 0g ` R ) ) ) , RR* , < ) ) |
| 13 | 6 8 12 | 3syl | |- ( ( I e. V /\ R e. Ring ) -> ( D ` .0. ) = sup ( ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( .0. supp ( 0g ` R ) ) ) , RR* , < ) ) |
| 14 | simpl | |- ( ( I e. V /\ R e. Ring ) -> I e. V ) |
|
| 15 | 4 | adantl | |- ( ( I e. V /\ R e. Ring ) -> R e. Grp ) |
| 16 | 2 10 9 3 14 15 | mpl0 | |- ( ( I e. V /\ R e. Ring ) -> .0. = ( { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } X. { ( 0g ` R ) } ) ) |
| 17 | fvex | |- ( 0g ` R ) e. _V |
|
| 18 | fnconstg | |- ( ( 0g ` R ) e. _V -> ( { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } X. { ( 0g ` R ) } ) Fn { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } ) |
|
| 19 | 17 18 | mp1i | |- ( ( I e. V /\ R e. Ring ) -> ( { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } X. { ( 0g ` R ) } ) Fn { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } ) |
| 20 | 16 | fneq1d | |- ( ( I e. V /\ R e. Ring ) -> ( .0. Fn { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } <-> ( { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } X. { ( 0g ` R ) } ) Fn { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } ) ) |
| 21 | 19 20 | mpbird | |- ( ( I e. V /\ R e. Ring ) -> .0. Fn { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } ) |
| 22 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 23 | 22 | rabex | |- { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } e. _V |
| 24 | 23 | a1i | |- ( ( I e. V /\ R e. Ring ) -> { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } e. _V ) |
| 25 | 17 | a1i | |- ( ( I e. V /\ R e. Ring ) -> ( 0g ` R ) e. _V ) |
| 26 | fnsuppeq0 | |- ( ( .0. Fn { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } /\ { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } e. _V /\ ( 0g ` R ) e. _V ) -> ( ( .0. supp ( 0g ` R ) ) = (/) <-> .0. = ( { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } X. { ( 0g ` R ) } ) ) ) |
|
| 27 | 21 24 25 26 | syl3anc | |- ( ( I e. V /\ R e. Ring ) -> ( ( .0. supp ( 0g ` R ) ) = (/) <-> .0. = ( { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } X. { ( 0g ` R ) } ) ) ) |
| 28 | 16 27 | mpbird | |- ( ( I e. V /\ R e. Ring ) -> ( .0. supp ( 0g ` R ) ) = (/) ) |
| 29 | 28 | imaeq2d | |- ( ( I e. V /\ R e. Ring ) -> ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( .0. supp ( 0g ` R ) ) ) = ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " (/) ) ) |
| 30 | ima0 | |- ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " (/) ) = (/) |
|
| 31 | 29 30 | eqtrdi | |- ( ( I e. V /\ R e. Ring ) -> ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( .0. supp ( 0g ` R ) ) ) = (/) ) |
| 32 | 31 | supeq1d | |- ( ( I e. V /\ R e. Ring ) -> sup ( ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( .0. supp ( 0g ` R ) ) ) , RR* , < ) = sup ( (/) , RR* , < ) ) |
| 33 | xrsup0 | |- sup ( (/) , RR* , < ) = -oo |
|
| 34 | 32 33 | eqtrdi | |- ( ( I e. V /\ R e. Ring ) -> sup ( ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( .0. supp ( 0g ` R ) ) ) , RR* , < ) = -oo ) |
| 35 | 13 34 | eqtrd | |- ( ( I e. V /\ R e. Ring ) -> ( D ` .0. ) = -oo ) |