This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A uniform limit of measurable functions is measurable. (This is just a corollary of the fact that a pointwise limit of measurable functions is measurable, see mbflim .) (Contributed by Mario Carneiro, 18-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfulm.z | |- Z = ( ZZ>= ` M ) |
|
| mbfulm.m | |- ( ph -> M e. ZZ ) |
||
| mbfulm.f | |- ( ph -> F : Z --> MblFn ) |
||
| mbfulm.u | |- ( ph -> F ( ~~>u ` S ) G ) |
||
| Assertion | mbfulm | |- ( ph -> G e. MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfulm.z | |- Z = ( ZZ>= ` M ) |
|
| 2 | mbfulm.m | |- ( ph -> M e. ZZ ) |
|
| 3 | mbfulm.f | |- ( ph -> F : Z --> MblFn ) |
|
| 4 | mbfulm.u | |- ( ph -> F ( ~~>u ` S ) G ) |
|
| 5 | ulmcl | |- ( F ( ~~>u ` S ) G -> G : S --> CC ) |
|
| 6 | 4 5 | syl | |- ( ph -> G : S --> CC ) |
| 7 | 6 | feqmptd | |- ( ph -> G = ( z e. S |-> ( G ` z ) ) ) |
| 8 | 2 | adantr | |- ( ( ph /\ z e. S ) -> M e. ZZ ) |
| 9 | 3 | ffnd | |- ( ph -> F Fn Z ) |
| 10 | ulmf2 | |- ( ( F Fn Z /\ F ( ~~>u ` S ) G ) -> F : Z --> ( CC ^m S ) ) |
|
| 11 | 9 4 10 | syl2anc | |- ( ph -> F : Z --> ( CC ^m S ) ) |
| 12 | 11 | adantr | |- ( ( ph /\ z e. S ) -> F : Z --> ( CC ^m S ) ) |
| 13 | simpr | |- ( ( ph /\ z e. S ) -> z e. S ) |
|
| 14 | 1 | fvexi | |- Z e. _V |
| 15 | 14 | mptex | |- ( k e. Z |-> ( ( F ` k ) ` z ) ) e. _V |
| 16 | 15 | a1i | |- ( ( ph /\ z e. S ) -> ( k e. Z |-> ( ( F ` k ) ` z ) ) e. _V ) |
| 17 | fveq2 | |- ( k = n -> ( F ` k ) = ( F ` n ) ) |
|
| 18 | 17 | fveq1d | |- ( k = n -> ( ( F ` k ) ` z ) = ( ( F ` n ) ` z ) ) |
| 19 | eqid | |- ( k e. Z |-> ( ( F ` k ) ` z ) ) = ( k e. Z |-> ( ( F ` k ) ` z ) ) |
|
| 20 | fvex | |- ( ( F ` n ) ` z ) e. _V |
|
| 21 | 18 19 20 | fvmpt | |- ( n e. Z -> ( ( k e. Z |-> ( ( F ` k ) ` z ) ) ` n ) = ( ( F ` n ) ` z ) ) |
| 22 | 21 | eqcomd | |- ( n e. Z -> ( ( F ` n ) ` z ) = ( ( k e. Z |-> ( ( F ` k ) ` z ) ) ` n ) ) |
| 23 | 22 | adantl | |- ( ( ( ph /\ z e. S ) /\ n e. Z ) -> ( ( F ` n ) ` z ) = ( ( k e. Z |-> ( ( F ` k ) ` z ) ) ` n ) ) |
| 24 | 4 | adantr | |- ( ( ph /\ z e. S ) -> F ( ~~>u ` S ) G ) |
| 25 | 1 8 12 13 16 23 24 | ulmclm | |- ( ( ph /\ z e. S ) -> ( k e. Z |-> ( ( F ` k ) ` z ) ) ~~> ( G ` z ) ) |
| 26 | 11 | ffvelcdmda | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. ( CC ^m S ) ) |
| 27 | elmapi | |- ( ( F ` k ) e. ( CC ^m S ) -> ( F ` k ) : S --> CC ) |
|
| 28 | 26 27 | syl | |- ( ( ph /\ k e. Z ) -> ( F ` k ) : S --> CC ) |
| 29 | 28 | feqmptd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( z e. S |-> ( ( F ` k ) ` z ) ) ) |
| 30 | 3 | ffvelcdmda | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. MblFn ) |
| 31 | 29 30 | eqeltrrd | |- ( ( ph /\ k e. Z ) -> ( z e. S |-> ( ( F ` k ) ` z ) ) e. MblFn ) |
| 32 | 28 | ffvelcdmda | |- ( ( ( ph /\ k e. Z ) /\ z e. S ) -> ( ( F ` k ) ` z ) e. CC ) |
| 33 | 32 | anasss | |- ( ( ph /\ ( k e. Z /\ z e. S ) ) -> ( ( F ` k ) ` z ) e. CC ) |
| 34 | 1 2 25 31 33 | mbflim | |- ( ph -> ( z e. S |-> ( G ` z ) ) e. MblFn ) |
| 35 | 7 34 | eqeltrd | |- ( ph -> G e. MblFn ) |