This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The positive part of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfpos.1 | |- ( ( ph /\ x e. A ) -> B e. RR ) |
|
| mbfpos.2 | |- ( ph -> ( x e. A |-> B ) e. MblFn ) |
||
| Assertion | mbfpos | |- ( ph -> ( x e. A |-> if ( 0 <_ B , B , 0 ) ) e. MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfpos.1 | |- ( ( ph /\ x e. A ) -> B e. RR ) |
|
| 2 | mbfpos.2 | |- ( ph -> ( x e. A |-> B ) e. MblFn ) |
|
| 3 | c0ex | |- 0 e. _V |
|
| 4 | 3 | fvconst2 | |- ( x e. A -> ( ( A X. { 0 } ) ` x ) = 0 ) |
| 5 | 4 | adantl | |- ( ( ph /\ x e. A ) -> ( ( A X. { 0 } ) ` x ) = 0 ) |
| 6 | simpr | |- ( ( ph /\ x e. A ) -> x e. A ) |
|
| 7 | eqid | |- ( x e. A |-> B ) = ( x e. A |-> B ) |
|
| 8 | 7 | fvmpt2 | |- ( ( x e. A /\ B e. RR ) -> ( ( x e. A |-> B ) ` x ) = B ) |
| 9 | 6 1 8 | syl2anc | |- ( ( ph /\ x e. A ) -> ( ( x e. A |-> B ) ` x ) = B ) |
| 10 | 5 9 | breq12d | |- ( ( ph /\ x e. A ) -> ( ( ( A X. { 0 } ) ` x ) <_ ( ( x e. A |-> B ) ` x ) <-> 0 <_ B ) ) |
| 11 | 10 9 5 | ifbieq12d | |- ( ( ph /\ x e. A ) -> if ( ( ( A X. { 0 } ) ` x ) <_ ( ( x e. A |-> B ) ` x ) , ( ( x e. A |-> B ) ` x ) , ( ( A X. { 0 } ) ` x ) ) = if ( 0 <_ B , B , 0 ) ) |
| 12 | 11 | mpteq2dva | |- ( ph -> ( x e. A |-> if ( ( ( A X. { 0 } ) ` x ) <_ ( ( x e. A |-> B ) ` x ) , ( ( x e. A |-> B ) ` x ) , ( ( A X. { 0 } ) ` x ) ) ) = ( x e. A |-> if ( 0 <_ B , B , 0 ) ) ) |
| 13 | 0re | |- 0 e. RR |
|
| 14 | 13 | fconst6 | |- ( A X. { 0 } ) : A --> RR |
| 15 | 14 | a1i | |- ( ph -> ( A X. { 0 } ) : A --> RR ) |
| 16 | 2 1 | mbfdm2 | |- ( ph -> A e. dom vol ) |
| 17 | 0cnd | |- ( ph -> 0 e. CC ) |
|
| 18 | mbfconst | |- ( ( A e. dom vol /\ 0 e. CC ) -> ( A X. { 0 } ) e. MblFn ) |
|
| 19 | 16 17 18 | syl2anc | |- ( ph -> ( A X. { 0 } ) e. MblFn ) |
| 20 | 1 | fmpttd | |- ( ph -> ( x e. A |-> B ) : A --> RR ) |
| 21 | nfcv | |- F/_ y if ( ( ( A X. { 0 } ) ` x ) <_ ( ( x e. A |-> B ) ` x ) , ( ( x e. A |-> B ) ` x ) , ( ( A X. { 0 } ) ` x ) ) |
|
| 22 | nfcv | |- F/_ x ( ( A X. { 0 } ) ` y ) |
|
| 23 | nfcv | |- F/_ x <_ |
|
| 24 | nffvmpt1 | |- F/_ x ( ( x e. A |-> B ) ` y ) |
|
| 25 | 22 23 24 | nfbr | |- F/ x ( ( A X. { 0 } ) ` y ) <_ ( ( x e. A |-> B ) ` y ) |
| 26 | 25 24 22 | nfif | |- F/_ x if ( ( ( A X. { 0 } ) ` y ) <_ ( ( x e. A |-> B ) ` y ) , ( ( x e. A |-> B ) ` y ) , ( ( A X. { 0 } ) ` y ) ) |
| 27 | fveq2 | |- ( x = y -> ( ( A X. { 0 } ) ` x ) = ( ( A X. { 0 } ) ` y ) ) |
|
| 28 | fveq2 | |- ( x = y -> ( ( x e. A |-> B ) ` x ) = ( ( x e. A |-> B ) ` y ) ) |
|
| 29 | 27 28 | breq12d | |- ( x = y -> ( ( ( A X. { 0 } ) ` x ) <_ ( ( x e. A |-> B ) ` x ) <-> ( ( A X. { 0 } ) ` y ) <_ ( ( x e. A |-> B ) ` y ) ) ) |
| 30 | 29 28 27 | ifbieq12d | |- ( x = y -> if ( ( ( A X. { 0 } ) ` x ) <_ ( ( x e. A |-> B ) ` x ) , ( ( x e. A |-> B ) ` x ) , ( ( A X. { 0 } ) ` x ) ) = if ( ( ( A X. { 0 } ) ` y ) <_ ( ( x e. A |-> B ) ` y ) , ( ( x e. A |-> B ) ` y ) , ( ( A X. { 0 } ) ` y ) ) ) |
| 31 | 21 26 30 | cbvmpt | |- ( x e. A |-> if ( ( ( A X. { 0 } ) ` x ) <_ ( ( x e. A |-> B ) ` x ) , ( ( x e. A |-> B ) ` x ) , ( ( A X. { 0 } ) ` x ) ) ) = ( y e. A |-> if ( ( ( A X. { 0 } ) ` y ) <_ ( ( x e. A |-> B ) ` y ) , ( ( x e. A |-> B ) ` y ) , ( ( A X. { 0 } ) ` y ) ) ) |
| 32 | 15 19 20 2 31 | mbfmax | |- ( ph -> ( x e. A |-> if ( ( ( A X. { 0 } ) ` x ) <_ ( ( x e. A |-> B ) ` x ) , ( ( x e. A |-> B ) ` x ) , ( ( A X. { 0 } ) ` x ) ) ) e. MblFn ) |
| 33 | 12 32 | eqeltrrd | |- ( ph -> ( x e. A |-> if ( 0 <_ B , B , 0 ) ) e. MblFn ) |