This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of the real part of a sequence. Proposition 12-2.4(c) of Gleason p. 172. (Contributed by NM, 7-Jun-2006) (Revised by Mario Carneiro, 9-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climcn1lem.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climcn1lem.2 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | ||
| climcn1lem.4 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | ||
| climcn1lem.5 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climcn1lem.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | ||
| climre.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( ℜ ‘ ( 𝐹 ‘ 𝑘 ) ) ) | ||
| Assertion | climre | ⊢ ( 𝜑 → 𝐺 ⇝ ( ℜ ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climcn1lem.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climcn1lem.2 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | |
| 3 | climcn1lem.4 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | |
| 4 | climcn1lem.5 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 5 | climcn1lem.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 6 | climre.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( ℜ ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 7 | ref | ⊢ ℜ : ℂ ⟶ ℝ | |
| 8 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 9 | fss | ⊢ ( ( ℜ : ℂ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → ℜ : ℂ ⟶ ℂ ) | |
| 10 | 7 8 9 | mp2an | ⊢ ℜ : ℂ ⟶ ℂ |
| 11 | recn2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( ℜ ‘ 𝑧 ) − ( ℜ ‘ 𝐴 ) ) ) < 𝑥 ) ) | |
| 12 | 1 2 3 4 5 10 11 6 | climcn1lem | ⊢ ( 𝜑 → 𝐺 ⇝ ( ℜ ‘ 𝐴 ) ) |