This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A point is a limit point of the whole space iff the singleton of the point is not open. (Contributed by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | maxlp | ⊢ ( 𝐽 ∈ Top → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ↔ ( 𝑃 ∈ 𝑋 ∧ ¬ { 𝑃 } ∈ 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | ssid | ⊢ 𝑋 ⊆ 𝑋 | |
| 3 | 1 | lpss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 ⊆ 𝑋 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ⊆ 𝑋 ) |
| 4 | 2 3 | mpan2 | ⊢ ( 𝐽 ∈ Top → ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ⊆ 𝑋 ) |
| 5 | 4 | sseld | ⊢ ( 𝐽 ∈ Top → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) → 𝑃 ∈ 𝑋 ) ) |
| 6 | 5 | pm4.71rd | ⊢ ( 𝐽 ∈ Top → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ↔ ( 𝑃 ∈ 𝑋 ∧ 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ) ) ) |
| 7 | simpl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) → 𝐽 ∈ Top ) | |
| 8 | 1 | islp | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ↔ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ { 𝑃 } ) ) ) ) |
| 9 | 7 2 8 | sylancl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ↔ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ { 𝑃 } ) ) ) ) |
| 10 | snssi | ⊢ ( 𝑃 ∈ 𝑋 → { 𝑃 } ⊆ 𝑋 ) | |
| 11 | 1 | clsdif | ⊢ ( ( 𝐽 ∈ Top ∧ { 𝑃 } ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ { 𝑃 } ) ) = ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) ) |
| 12 | 10 11 | sylan2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ { 𝑃 } ) ) = ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) ) |
| 13 | 12 | eleq2d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ { 𝑃 } ) ) ↔ 𝑃 ∈ ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) ) ) |
| 14 | eldif | ⊢ ( 𝑃 ∈ ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) ↔ ( 𝑃 ∈ 𝑋 ∧ ¬ 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) ) | |
| 15 | 14 | baib | ⊢ ( 𝑃 ∈ 𝑋 → ( 𝑃 ∈ ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) ↔ ¬ 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) ) |
| 16 | 15 | adantl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ∈ ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) ↔ ¬ 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) ) |
| 17 | snssi | ⊢ ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) → { 𝑃 } ⊆ ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) | |
| 18 | 17 | adantl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) → { 𝑃 } ⊆ ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) |
| 19 | 1 | ntrss2 | ⊢ ( ( 𝐽 ∈ Top ∧ { 𝑃 } ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ⊆ { 𝑃 } ) |
| 20 | 10 19 | sylan2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ⊆ { 𝑃 } ) |
| 21 | 20 | adantr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) → ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ⊆ { 𝑃 } ) |
| 22 | 18 21 | eqssd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) → { 𝑃 } = ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) |
| 23 | 1 | ntropn | ⊢ ( ( 𝐽 ∈ Top ∧ { 𝑃 } ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ 𝐽 ) |
| 24 | 10 23 | sylan2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ 𝐽 ) |
| 25 | 24 | adantr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) → ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ 𝐽 ) |
| 26 | 22 25 | eqeltrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) → { 𝑃 } ∈ 𝐽 ) |
| 27 | snidg | ⊢ ( 𝑃 ∈ 𝑋 → 𝑃 ∈ { 𝑃 } ) | |
| 28 | 27 | ad2antlr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ∧ { 𝑃 } ∈ 𝐽 ) → 𝑃 ∈ { 𝑃 } ) |
| 29 | isopn3i | ⊢ ( ( 𝐽 ∈ Top ∧ { 𝑃 } ∈ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) = { 𝑃 } ) | |
| 30 | 29 | adantlr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ∧ { 𝑃 } ∈ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) = { 𝑃 } ) |
| 31 | 28 30 | eleqtrrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) ∧ { 𝑃 } ∈ 𝐽 ) → 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) |
| 32 | 26 31 | impbida | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ↔ { 𝑃 } ∈ 𝐽 ) ) |
| 33 | 32 | notbid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) → ( ¬ 𝑃 ∈ ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ↔ ¬ { 𝑃 } ∈ 𝐽 ) ) |
| 34 | 16 33 | bitrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ∈ ( 𝑋 ∖ ( ( int ‘ 𝐽 ) ‘ { 𝑃 } ) ) ↔ ¬ { 𝑃 } ∈ 𝐽 ) ) |
| 35 | 9 13 34 | 3bitrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ↔ ¬ { 𝑃 } ∈ 𝐽 ) ) |
| 36 | 35 | pm5.32da | ⊢ ( 𝐽 ∈ Top → ( ( 𝑃 ∈ 𝑋 ∧ 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ) ↔ ( 𝑃 ∈ 𝑋 ∧ ¬ { 𝑃 } ∈ 𝐽 ) ) ) |
| 37 | 6 36 | bitrd | ⊢ ( 𝐽 ∈ Top → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ↔ ( 𝑃 ∈ 𝑋 ∧ ¬ { 𝑃 } ∈ 𝐽 ) ) ) |