This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A point is a limit point of the whole space iff the singleton of the point is not open. (Contributed by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpfval.1 | |- X = U. J |
|
| Assertion | maxlp | |- ( J e. Top -> ( P e. ( ( limPt ` J ) ` X ) <-> ( P e. X /\ -. { P } e. J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | |- X = U. J |
|
| 2 | ssid | |- X C_ X |
|
| 3 | 1 | lpss | |- ( ( J e. Top /\ X C_ X ) -> ( ( limPt ` J ) ` X ) C_ X ) |
| 4 | 2 3 | mpan2 | |- ( J e. Top -> ( ( limPt ` J ) ` X ) C_ X ) |
| 5 | 4 | sseld | |- ( J e. Top -> ( P e. ( ( limPt ` J ) ` X ) -> P e. X ) ) |
| 6 | 5 | pm4.71rd | |- ( J e. Top -> ( P e. ( ( limPt ` J ) ` X ) <-> ( P e. X /\ P e. ( ( limPt ` J ) ` X ) ) ) ) |
| 7 | simpl | |- ( ( J e. Top /\ P e. X ) -> J e. Top ) |
|
| 8 | 1 | islp | |- ( ( J e. Top /\ X C_ X ) -> ( P e. ( ( limPt ` J ) ` X ) <-> P e. ( ( cls ` J ) ` ( X \ { P } ) ) ) ) |
| 9 | 7 2 8 | sylancl | |- ( ( J e. Top /\ P e. X ) -> ( P e. ( ( limPt ` J ) ` X ) <-> P e. ( ( cls ` J ) ` ( X \ { P } ) ) ) ) |
| 10 | snssi | |- ( P e. X -> { P } C_ X ) |
|
| 11 | 1 | clsdif | |- ( ( J e. Top /\ { P } C_ X ) -> ( ( cls ` J ) ` ( X \ { P } ) ) = ( X \ ( ( int ` J ) ` { P } ) ) ) |
| 12 | 10 11 | sylan2 | |- ( ( J e. Top /\ P e. X ) -> ( ( cls ` J ) ` ( X \ { P } ) ) = ( X \ ( ( int ` J ) ` { P } ) ) ) |
| 13 | 12 | eleq2d | |- ( ( J e. Top /\ P e. X ) -> ( P e. ( ( cls ` J ) ` ( X \ { P } ) ) <-> P e. ( X \ ( ( int ` J ) ` { P } ) ) ) ) |
| 14 | eldif | |- ( P e. ( X \ ( ( int ` J ) ` { P } ) ) <-> ( P e. X /\ -. P e. ( ( int ` J ) ` { P } ) ) ) |
|
| 15 | 14 | baib | |- ( P e. X -> ( P e. ( X \ ( ( int ` J ) ` { P } ) ) <-> -. P e. ( ( int ` J ) ` { P } ) ) ) |
| 16 | 15 | adantl | |- ( ( J e. Top /\ P e. X ) -> ( P e. ( X \ ( ( int ` J ) ` { P } ) ) <-> -. P e. ( ( int ` J ) ` { P } ) ) ) |
| 17 | snssi | |- ( P e. ( ( int ` J ) ` { P } ) -> { P } C_ ( ( int ` J ) ` { P } ) ) |
|
| 18 | 17 | adantl | |- ( ( ( J e. Top /\ P e. X ) /\ P e. ( ( int ` J ) ` { P } ) ) -> { P } C_ ( ( int ` J ) ` { P } ) ) |
| 19 | 1 | ntrss2 | |- ( ( J e. Top /\ { P } C_ X ) -> ( ( int ` J ) ` { P } ) C_ { P } ) |
| 20 | 10 19 | sylan2 | |- ( ( J e. Top /\ P e. X ) -> ( ( int ` J ) ` { P } ) C_ { P } ) |
| 21 | 20 | adantr | |- ( ( ( J e. Top /\ P e. X ) /\ P e. ( ( int ` J ) ` { P } ) ) -> ( ( int ` J ) ` { P } ) C_ { P } ) |
| 22 | 18 21 | eqssd | |- ( ( ( J e. Top /\ P e. X ) /\ P e. ( ( int ` J ) ` { P } ) ) -> { P } = ( ( int ` J ) ` { P } ) ) |
| 23 | 1 | ntropn | |- ( ( J e. Top /\ { P } C_ X ) -> ( ( int ` J ) ` { P } ) e. J ) |
| 24 | 10 23 | sylan2 | |- ( ( J e. Top /\ P e. X ) -> ( ( int ` J ) ` { P } ) e. J ) |
| 25 | 24 | adantr | |- ( ( ( J e. Top /\ P e. X ) /\ P e. ( ( int ` J ) ` { P } ) ) -> ( ( int ` J ) ` { P } ) e. J ) |
| 26 | 22 25 | eqeltrd | |- ( ( ( J e. Top /\ P e. X ) /\ P e. ( ( int ` J ) ` { P } ) ) -> { P } e. J ) |
| 27 | snidg | |- ( P e. X -> P e. { P } ) |
|
| 28 | 27 | ad2antlr | |- ( ( ( J e. Top /\ P e. X ) /\ { P } e. J ) -> P e. { P } ) |
| 29 | isopn3i | |- ( ( J e. Top /\ { P } e. J ) -> ( ( int ` J ) ` { P } ) = { P } ) |
|
| 30 | 29 | adantlr | |- ( ( ( J e. Top /\ P e. X ) /\ { P } e. J ) -> ( ( int ` J ) ` { P } ) = { P } ) |
| 31 | 28 30 | eleqtrrd | |- ( ( ( J e. Top /\ P e. X ) /\ { P } e. J ) -> P e. ( ( int ` J ) ` { P } ) ) |
| 32 | 26 31 | impbida | |- ( ( J e. Top /\ P e. X ) -> ( P e. ( ( int ` J ) ` { P } ) <-> { P } e. J ) ) |
| 33 | 32 | notbid | |- ( ( J e. Top /\ P e. X ) -> ( -. P e. ( ( int ` J ) ` { P } ) <-> -. { P } e. J ) ) |
| 34 | 16 33 | bitrd | |- ( ( J e. Top /\ P e. X ) -> ( P e. ( X \ ( ( int ` J ) ` { P } ) ) <-> -. { P } e. J ) ) |
| 35 | 9 13 34 | 3bitrd | |- ( ( J e. Top /\ P e. X ) -> ( P e. ( ( limPt ` J ) ` X ) <-> -. { P } e. J ) ) |
| 36 | 35 | pm5.32da | |- ( J e. Top -> ( ( P e. X /\ P e. ( ( limPt ` J ) ` X ) ) <-> ( P e. X /\ -. { P } e. J ) ) ) |
| 37 | 6 36 | bitrd | |- ( J e. Top -> ( P e. ( ( limPt ` J ) ` X ) <-> ( P e. X /\ -. { P } e. J ) ) ) |