This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication in the matrix ring is cell-wise. (Contributed by AV, 7-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matplusgcell.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| matplusgcell.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| matvscacell.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| matvscacell.v | ⊢ · = ( ·𝑠 ‘ 𝐴 ) | ||
| matvscacell.t | ⊢ × = ( .r ‘ 𝑅 ) | ||
| Assertion | matvscacell | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( 𝐼 ( 𝑋 · 𝑌 ) 𝐽 ) = ( 𝑋 × ( 𝐼 𝑌 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matplusgcell.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | matplusgcell.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 3 | matvscacell.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 4 | matvscacell.v | ⊢ · = ( ·𝑠 ‘ 𝐴 ) | |
| 5 | matvscacell.t | ⊢ × = ( .r ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( 𝑁 × 𝑁 ) = ( 𝑁 × 𝑁 ) | |
| 7 | 1 2 3 4 5 6 | matvsca2 | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) = ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f × 𝑌 ) ) |
| 8 | 7 | oveqd | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐼 ( 𝑋 · 𝑌 ) 𝐽 ) = ( 𝐼 ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f × 𝑌 ) 𝐽 ) ) |
| 9 | 8 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( 𝐼 ( 𝑋 · 𝑌 ) 𝐽 ) = ( 𝐼 ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f × 𝑌 ) 𝐽 ) ) |
| 10 | df-ov | ⊢ ( 𝐼 ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f × 𝑌 ) 𝐽 ) = ( ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f × 𝑌 ) ‘ 〈 𝐼 , 𝐽 〉 ) | |
| 11 | 10 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( 𝐼 ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f × 𝑌 ) 𝐽 ) = ( ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f × 𝑌 ) ‘ 〈 𝐼 , 𝐽 〉 ) ) |
| 12 | opelxpi | ⊢ ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) → 〈 𝐼 , 𝐽 〉 ∈ ( 𝑁 × 𝑁 ) ) | |
| 13 | 12 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → 〈 𝐼 , 𝐽 〉 ∈ ( 𝑁 × 𝑁 ) ) |
| 14 | 1 2 | matrcl | ⊢ ( 𝑌 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
| 15 | 14 | simpld | ⊢ ( 𝑌 ∈ 𝐵 → 𝑁 ∈ Fin ) |
| 16 | 15 | adantl | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → 𝑁 ∈ Fin ) |
| 17 | 16 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → 𝑁 ∈ Fin ) |
| 18 | xpfi | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑁 × 𝑁 ) ∈ Fin ) | |
| 19 | 17 17 18 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( 𝑁 × 𝑁 ) ∈ Fin ) |
| 20 | simp2l | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → 𝑋 ∈ 𝐾 ) | |
| 21 | 2 | eleq2i | ⊢ ( 𝑌 ∈ 𝐵 ↔ 𝑌 ∈ ( Base ‘ 𝐴 ) ) |
| 22 | 21 | biimpi | ⊢ ( 𝑌 ∈ 𝐵 → 𝑌 ∈ ( Base ‘ 𝐴 ) ) |
| 23 | 22 | adantl | ⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ ( Base ‘ 𝐴 ) ) |
| 24 | 23 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → 𝑌 ∈ ( Base ‘ 𝐴 ) ) |
| 25 | simp1 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → 𝑅 ∈ Ring ) | |
| 26 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 27 | 1 26 | matbas2 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |
| 28 | 17 25 27 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |
| 29 | 24 28 | eleqtrrd | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 30 | elmapfn | ⊢ ( 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) → 𝑌 Fn ( 𝑁 × 𝑁 ) ) | |
| 31 | 29 30 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → 𝑌 Fn ( 𝑁 × 𝑁 ) ) |
| 32 | df-ov | ⊢ ( 𝐼 𝑌 𝐽 ) = ( 𝑌 ‘ 〈 𝐼 , 𝐽 〉 ) | |
| 33 | 32 | eqcomi | ⊢ ( 𝑌 ‘ 〈 𝐼 , 𝐽 〉 ) = ( 𝐼 𝑌 𝐽 ) |
| 34 | 33 | a1i | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) ∧ 〈 𝐼 , 𝐽 〉 ∈ ( 𝑁 × 𝑁 ) ) → ( 𝑌 ‘ 〈 𝐼 , 𝐽 〉 ) = ( 𝐼 𝑌 𝐽 ) ) |
| 35 | 19 20 31 34 | ofc1 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) ∧ 〈 𝐼 , 𝐽 〉 ∈ ( 𝑁 × 𝑁 ) ) → ( ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f × 𝑌 ) ‘ 〈 𝐼 , 𝐽 〉 ) = ( 𝑋 × ( 𝐼 𝑌 𝐽 ) ) ) |
| 36 | 13 35 | mpdan | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f × 𝑌 ) ‘ 〈 𝐼 , 𝐽 〉 ) = ( 𝑋 × ( 𝐼 𝑌 𝐽 ) ) ) |
| 37 | 9 11 36 | 3eqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( 𝐼 ( 𝑋 · 𝑌 ) 𝐽 ) = ( 𝑋 × ( 𝐼 𝑌 𝐽 ) ) ) |