This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Finite commutative sums in a matrix algebra are taken componentwise. (Contributed by AV, 26-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matgsum.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| matgsum.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| matgsum.z | ⊢ 0 = ( 0g ‘ 𝐴 ) | ||
| matgsum.i | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| matgsum.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) | ||
| matgsum.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| matgsum.f | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ∈ 𝐵 ) | ||
| matgsum.w | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) finSupp 0 ) | ||
| Assertion | matgsum | ⊢ ( 𝜑 → ( 𝐴 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matgsum.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | matgsum.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 3 | matgsum.z | ⊢ 0 = ( 0g ‘ 𝐴 ) | |
| 4 | matgsum.i | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 5 | matgsum.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) | |
| 6 | matgsum.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 7 | matgsum.f | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ∈ 𝐵 ) | |
| 8 | matgsum.w | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) finSupp 0 ) | |
| 9 | 5 | mptexd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) ∈ V ) |
| 10 | 1 | ovexi | ⊢ 𝐴 ∈ V |
| 11 | 10 | a1i | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 12 | ovexd | ⊢ ( 𝜑 → ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ∈ V ) | |
| 13 | eqid | ⊢ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) = ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) | |
| 14 | 1 13 | matbas | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( Base ‘ 𝐴 ) ) |
| 15 | 4 6 14 | syl2anc | ⊢ ( 𝜑 → ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( Base ‘ 𝐴 ) ) |
| 16 | 15 | eqcomd | ⊢ ( 𝜑 → ( Base ‘ 𝐴 ) = ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) ) |
| 17 | 1 13 | matplusg | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( +g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( +g ‘ 𝐴 ) ) |
| 18 | 4 6 17 | syl2anc | ⊢ ( 𝜑 → ( +g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( +g ‘ 𝐴 ) ) |
| 19 | 18 | eqcomd | ⊢ ( 𝜑 → ( +g ‘ 𝐴 ) = ( +g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) ) |
| 20 | 9 11 12 16 19 | gsumpropd | ⊢ ( 𝜑 → ( 𝐴 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) ) = ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) ) ) |
| 21 | mpompts | ⊢ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) = ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) | |
| 22 | 21 | a1i | ⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) = ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) |
| 23 | 22 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) = ( 𝑦 ∈ 𝐽 ↦ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) ) |
| 24 | 23 | oveq2d | ⊢ ( 𝜑 → ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) ) = ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) ) ) |
| 25 | eqid | ⊢ ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) | |
| 26 | eqid | ⊢ ( 0g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( 0g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) | |
| 27 | xpfi | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑁 × 𝑁 ) ∈ Fin ) | |
| 28 | 4 4 27 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 × 𝑁 ) ∈ Fin ) |
| 29 | 7 2 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ∈ ( Base ‘ 𝐴 ) ) |
| 30 | 21 | eqcomi | ⊢ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) |
| 31 | 30 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) |
| 32 | 4 6 | jca | ⊢ ( 𝜑 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 33 | 32 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 34 | 33 14 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( Base ‘ 𝐴 ) ) |
| 35 | 29 31 34 | 3eltr4d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ∈ ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) ) |
| 36 | 30 | mpteq2i | ⊢ ( 𝑦 ∈ 𝐽 ↦ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) = ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) |
| 37 | 3 | eqcomi | ⊢ ( 0g ‘ 𝐴 ) = 0 |
| 38 | 8 36 37 | 3brtr4g | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) finSupp ( 0g ‘ 𝐴 ) ) |
| 39 | 1 13 | mat0 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( 0g ‘ 𝐴 ) ) |
| 40 | 4 6 39 | syl2anc | ⊢ ( 𝜑 → ( 0g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( 0g ‘ 𝐴 ) ) |
| 41 | 38 40 | breqtrrd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) finSupp ( 0g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) ) |
| 42 | 13 25 26 28 5 6 35 41 | frlmgsum | ⊢ ( 𝜑 → ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) ) = ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) ) ) |
| 43 | 24 42 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) ) = ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) ) ) |
| 44 | fvex | ⊢ ( 2nd ‘ 𝑧 ) ∈ V | |
| 45 | csbov2g | ⊢ ( ( 2nd ‘ 𝑧 ) ∈ V → ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) = ( 𝑅 Σg ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) | |
| 46 | 44 45 | ax-mp | ⊢ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) = ( 𝑅 Σg ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) |
| 47 | 46 | csbeq2i | ⊢ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) = ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ( 𝑅 Σg ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) |
| 48 | fvex | ⊢ ( 1st ‘ 𝑧 ) ∈ V | |
| 49 | csbov2g | ⊢ ( ( 1st ‘ 𝑧 ) ∈ V → ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ( 𝑅 Σg ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) = ( 𝑅 Σg ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) | |
| 50 | 48 49 | ax-mp | ⊢ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ( 𝑅 Σg ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) = ( 𝑅 Σg ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) |
| 51 | csbmpt2 | ⊢ ( ( 2nd ‘ 𝑧 ) ∈ V → ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) = ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) | |
| 52 | 44 51 | ax-mp | ⊢ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) = ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) |
| 53 | 52 | csbeq2i | ⊢ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) = ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) |
| 54 | csbmpt2 | ⊢ ( ( 1st ‘ 𝑧 ) ∈ V → ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) = ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) | |
| 55 | 48 54 | ax-mp | ⊢ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) = ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) |
| 56 | 53 55 | eqtri | ⊢ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) = ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) |
| 57 | 56 | oveq2i | ⊢ ( 𝑅 Σg ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) = ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) |
| 58 | 47 50 57 | 3eqtrri | ⊢ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) = ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) |
| 59 | 58 | mpteq2i | ⊢ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) ) = ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) |
| 60 | mpompts | ⊢ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) = ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) | |
| 61 | 59 60 | eqtr4i | ⊢ ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) |
| 62 | 61 | a1i | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑁 × 𝑁 ) ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑖 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑗 ⦌ 𝑈 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) ) |
| 63 | 20 43 62 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐴 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝑈 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) ) |