This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplying two transposed matrices results in the transposition of the product of the two matrices. (Contributed by Stefan O'Rear, 17-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mattposm.a | |- A = ( N Mat R ) |
|
| mattposm.b | |- B = ( Base ` A ) |
||
| mattposm.t | |- .x. = ( .r ` A ) |
||
| Assertion | mattposm | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> tpos ( X .x. Y ) = ( tpos Y .x. tpos X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mattposm.a | |- A = ( N Mat R ) |
|
| 2 | mattposm.b | |- B = ( Base ` A ) |
|
| 3 | mattposm.t | |- .x. = ( .r ` A ) |
|
| 4 | eqid | |- ( R maMul <. N , N , N >. ) = ( R maMul <. N , N , N >. ) |
|
| 5 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 6 | simp1 | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> R e. CRing ) |
|
| 7 | 1 2 | matrcl | |- ( Y e. B -> ( N e. Fin /\ R e. _V ) ) |
| 8 | 7 | simpld | |- ( Y e. B -> N e. Fin ) |
| 9 | 8 | 3ad2ant3 | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> N e. Fin ) |
| 10 | 1 5 2 | matbas2i | |- ( X e. B -> X e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 11 | 10 | 3ad2ant2 | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> X e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 12 | 1 5 2 | matbas2i | |- ( Y e. B -> Y e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 13 | 12 | 3ad2ant3 | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> Y e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 14 | 4 4 5 6 9 9 9 11 13 | mamutpos | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> tpos ( X ( R maMul <. N , N , N >. ) Y ) = ( tpos Y ( R maMul <. N , N , N >. ) tpos X ) ) |
| 15 | 1 4 | matmulr | |- ( ( N e. Fin /\ R e. CRing ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) ) |
| 16 | 9 6 15 | syl2anc | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> ( R maMul <. N , N , N >. ) = ( .r ` A ) ) |
| 17 | 3 16 | eqtr4id | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> .x. = ( R maMul <. N , N , N >. ) ) |
| 18 | 17 | oveqd | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> ( X .x. Y ) = ( X ( R maMul <. N , N , N >. ) Y ) ) |
| 19 | 18 | tposeqd | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> tpos ( X .x. Y ) = tpos ( X ( R maMul <. N , N , N >. ) Y ) ) |
| 20 | 17 | oveqd | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> ( tpos Y .x. tpos X ) = ( tpos Y ( R maMul <. N , N , N >. ) tpos X ) ) |
| 21 | 14 19 20 | 3eqtr4d | |- ( ( R e. CRing /\ X e. B /\ Y e. B ) -> tpos ( X .x. Y ) = ( tpos Y .x. tpos X ) ) |