This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity matrix multiplied with a scalar. (Contributed by Stefan O'Rear, 16-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matsc.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| matsc.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| matsc.m | ⊢ · = ( ·𝑠 ‘ 𝐴 ) | ||
| matsc.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | matsc | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾 ) → ( 𝐿 · ( 1r ‘ 𝐴 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 𝐿 , 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matsc.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | matsc.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 3 | matsc.m | ⊢ · = ( ·𝑠 ‘ 𝐴 ) | |
| 4 | matsc.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | simp3 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾 ) → 𝐿 ∈ 𝐾 ) | |
| 6 | 3simpa | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) | |
| 7 | 1 | matring | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
| 8 | eqid | ⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) | |
| 9 | eqid | ⊢ ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) | |
| 10 | 8 9 | ringidcl | ⊢ ( 𝐴 ∈ Ring → ( 1r ‘ 𝐴 ) ∈ ( Base ‘ 𝐴 ) ) |
| 11 | 6 7 10 | 3syl | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾 ) → ( 1r ‘ 𝐴 ) ∈ ( Base ‘ 𝐴 ) ) |
| 12 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 13 | eqid | ⊢ ( 𝑁 × 𝑁 ) = ( 𝑁 × 𝑁 ) | |
| 14 | 1 8 2 3 12 13 | matvsca2 | ⊢ ( ( 𝐿 ∈ 𝐾 ∧ ( 1r ‘ 𝐴 ) ∈ ( Base ‘ 𝐴 ) ) → ( 𝐿 · ( 1r ‘ 𝐴 ) ) = ( ( ( 𝑁 × 𝑁 ) × { 𝐿 } ) ∘f ( .r ‘ 𝑅 ) ( 1r ‘ 𝐴 ) ) ) |
| 15 | 5 11 14 | syl2anc | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾 ) → ( 𝐿 · ( 1r ‘ 𝐴 ) ) = ( ( ( 𝑁 × 𝑁 ) × { 𝐿 } ) ∘f ( .r ‘ 𝑅 ) ( 1r ‘ 𝐴 ) ) ) |
| 16 | simp1 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾 ) → 𝑁 ∈ Fin ) | |
| 17 | simp13 | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝐿 ∈ 𝐾 ) | |
| 18 | fvex | ⊢ ( 1r ‘ 𝑅 ) ∈ V | |
| 19 | 4 | fvexi | ⊢ 0 ∈ V |
| 20 | 18 19 | ifex | ⊢ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , 0 ) ∈ V |
| 21 | 20 | a1i | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , 0 ) ∈ V ) |
| 22 | fconstmpo | ⊢ ( ( 𝑁 × 𝑁 ) × { 𝐿 } ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝐿 ) | |
| 23 | 22 | a1i | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾 ) → ( ( 𝑁 × 𝑁 ) × { 𝐿 } ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ 𝐿 ) ) |
| 24 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 25 | 1 24 4 | mat1 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐴 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , 0 ) ) ) |
| 26 | 25 | 3adant3 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾 ) → ( 1r ‘ 𝐴 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , 0 ) ) ) |
| 27 | 16 16 17 21 23 26 | offval22 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾 ) → ( ( ( 𝑁 × 𝑁 ) × { 𝐿 } ) ∘f ( .r ‘ 𝑅 ) ( 1r ‘ 𝐴 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝐿 ( .r ‘ 𝑅 ) if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) |
| 28 | ovif2 | ⊢ ( 𝐿 ( .r ‘ 𝑅 ) if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , 0 ) ) = if ( 𝑖 = 𝑗 , ( 𝐿 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) , ( 𝐿 ( .r ‘ 𝑅 ) 0 ) ) | |
| 29 | 2 12 24 | ringridm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾 ) → ( 𝐿 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝐿 ) |
| 30 | 29 | 3adant1 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾 ) → ( 𝐿 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝐿 ) |
| 31 | 2 12 4 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾 ) → ( 𝐿 ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 32 | 31 | 3adant1 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾 ) → ( 𝐿 ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 33 | 30 32 | ifeq12d | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾 ) → if ( 𝑖 = 𝑗 , ( 𝐿 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) , ( 𝐿 ( .r ‘ 𝑅 ) 0 ) ) = if ( 𝑖 = 𝑗 , 𝐿 , 0 ) ) |
| 34 | 28 33 | eqtrid | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾 ) → ( 𝐿 ( .r ‘ 𝑅 ) if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , 0 ) ) = if ( 𝑖 = 𝑗 , 𝐿 , 0 ) ) |
| 35 | 34 | mpoeq3dv | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝐿 ( .r ‘ 𝑅 ) if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 𝐿 , 0 ) ) ) |
| 36 | 15 27 35 | 3eqtrd | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐾 ) → ( 𝐿 · ( 1r ‘ 𝐴 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , 𝐿 , 0 ) ) ) |