This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity matrix multiplied with a scalar. (Contributed by Stefan O'Rear, 16-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matsc.a | |- A = ( N Mat R ) |
|
| matsc.k | |- K = ( Base ` R ) |
||
| matsc.m | |- .x. = ( .s ` A ) |
||
| matsc.z | |- .0. = ( 0g ` R ) |
||
| Assertion | matsc | |- ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> ( L .x. ( 1r ` A ) ) = ( i e. N , j e. N |-> if ( i = j , L , .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matsc.a | |- A = ( N Mat R ) |
|
| 2 | matsc.k | |- K = ( Base ` R ) |
|
| 3 | matsc.m | |- .x. = ( .s ` A ) |
|
| 4 | matsc.z | |- .0. = ( 0g ` R ) |
|
| 5 | simp3 | |- ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> L e. K ) |
|
| 6 | 3simpa | |- ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> ( N e. Fin /\ R e. Ring ) ) |
|
| 7 | 1 | matring | |- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
| 8 | eqid | |- ( Base ` A ) = ( Base ` A ) |
|
| 9 | eqid | |- ( 1r ` A ) = ( 1r ` A ) |
|
| 10 | 8 9 | ringidcl | |- ( A e. Ring -> ( 1r ` A ) e. ( Base ` A ) ) |
| 11 | 6 7 10 | 3syl | |- ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> ( 1r ` A ) e. ( Base ` A ) ) |
| 12 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 13 | eqid | |- ( N X. N ) = ( N X. N ) |
|
| 14 | 1 8 2 3 12 13 | matvsca2 | |- ( ( L e. K /\ ( 1r ` A ) e. ( Base ` A ) ) -> ( L .x. ( 1r ` A ) ) = ( ( ( N X. N ) X. { L } ) oF ( .r ` R ) ( 1r ` A ) ) ) |
| 15 | 5 11 14 | syl2anc | |- ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> ( L .x. ( 1r ` A ) ) = ( ( ( N X. N ) X. { L } ) oF ( .r ` R ) ( 1r ` A ) ) ) |
| 16 | simp1 | |- ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> N e. Fin ) |
|
| 17 | simp13 | |- ( ( ( N e. Fin /\ R e. Ring /\ L e. K ) /\ i e. N /\ j e. N ) -> L e. K ) |
|
| 18 | fvex | |- ( 1r ` R ) e. _V |
|
| 19 | 4 | fvexi | |- .0. e. _V |
| 20 | 18 19 | ifex | |- if ( i = j , ( 1r ` R ) , .0. ) e. _V |
| 21 | 20 | a1i | |- ( ( ( N e. Fin /\ R e. Ring /\ L e. K ) /\ i e. N /\ j e. N ) -> if ( i = j , ( 1r ` R ) , .0. ) e. _V ) |
| 22 | fconstmpo | |- ( ( N X. N ) X. { L } ) = ( i e. N , j e. N |-> L ) |
|
| 23 | 22 | a1i | |- ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> ( ( N X. N ) X. { L } ) = ( i e. N , j e. N |-> L ) ) |
| 24 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 25 | 1 24 4 | mat1 | |- ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) = ( i e. N , j e. N |-> if ( i = j , ( 1r ` R ) , .0. ) ) ) |
| 26 | 25 | 3adant3 | |- ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> ( 1r ` A ) = ( i e. N , j e. N |-> if ( i = j , ( 1r ` R ) , .0. ) ) ) |
| 27 | 16 16 17 21 23 26 | offval22 | |- ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> ( ( ( N X. N ) X. { L } ) oF ( .r ` R ) ( 1r ` A ) ) = ( i e. N , j e. N |-> ( L ( .r ` R ) if ( i = j , ( 1r ` R ) , .0. ) ) ) ) |
| 28 | ovif2 | |- ( L ( .r ` R ) if ( i = j , ( 1r ` R ) , .0. ) ) = if ( i = j , ( L ( .r ` R ) ( 1r ` R ) ) , ( L ( .r ` R ) .0. ) ) |
|
| 29 | 2 12 24 | ringridm | |- ( ( R e. Ring /\ L e. K ) -> ( L ( .r ` R ) ( 1r ` R ) ) = L ) |
| 30 | 29 | 3adant1 | |- ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> ( L ( .r ` R ) ( 1r ` R ) ) = L ) |
| 31 | 2 12 4 | ringrz | |- ( ( R e. Ring /\ L e. K ) -> ( L ( .r ` R ) .0. ) = .0. ) |
| 32 | 31 | 3adant1 | |- ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> ( L ( .r ` R ) .0. ) = .0. ) |
| 33 | 30 32 | ifeq12d | |- ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> if ( i = j , ( L ( .r ` R ) ( 1r ` R ) ) , ( L ( .r ` R ) .0. ) ) = if ( i = j , L , .0. ) ) |
| 34 | 28 33 | eqtrid | |- ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> ( L ( .r ` R ) if ( i = j , ( 1r ` R ) , .0. ) ) = if ( i = j , L , .0. ) ) |
| 35 | 34 | mpoeq3dv | |- ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> ( i e. N , j e. N |-> ( L ( .r ` R ) if ( i = j , ( 1r ` R ) , .0. ) ) ) = ( i e. N , j e. N |-> if ( i = j , L , .0. ) ) ) |
| 36 | 15 27 35 | 3eqtrd | |- ( ( N e. Fin /\ R e. Ring /\ L e. K ) -> ( L .x. ( 1r ` A ) ) = ( i e. N , j e. N |-> if ( i = j , L , .0. ) ) ) |